This paper describes simulations of the generalized modified Benjamin-Bona-Mahony (BBM) equation, using finite difference methods (FDM). Well-posed boundary conditions (BCs) as well as stable semi-discrete approximations are derived using summations-by-parts (SBP) operators combined with the projection method. For time integration, explicit Runge-Kutta 4 (RK4) is used, as well as SBP-SAT, which discretizes the temporal domain using SBP operators and imposes initial conditions using simultaneous approximation term (SAT). These time-marching methods are evaluated and compared in terms of accuracy and computing times, and soliton-boundary interaction is studied. It is shown that SBP-SAT time-marching perform well and is more suitable than RK4 for this type of non-linear, dispersive problem. Generalized summation-by-parts (GSBP) time-marching perform particularly well, due to high accuracy with few solution points.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-503844 |
Date | January 2023 |
Creators | Kjelldahl, Vilma |
Publisher | Uppsala universitet, Avdelningen för beräkningsvetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | MATVET-F ; 23034 |
Page generated in 0.002 seconds