Translation initiation is a complex process which results in the assembly of the elongation competent 80S ribosome from the 40S and 60S ribosomal subunits, the initiator tRNA and mRNA, and is orchestrated by numerous eukaryotic initiation factors (eIFs). Although it represents one of the most regulated processes of gene expression, the exact mechanism of one of the key steps of translation initiation - mRNA recruitment to the 43S pre-initiation complex (PIC) - is still only poorly understood. Recent studies indicated that besides eIF4F and poly(A)-binding protein, also eIF3 might play an important, if not crucial, role in this step. In our laboratory, we recently identified a 10 Ala substitution (Box37) in the a/TIF32 subunit of Saccharomyces cerevisiae eIF3, which interfered with translation initiation rates. Detailed analysis showed that this mutation significantly reduces the amounts of model mRNA in the gradient fractions containing 48S PICs as the only detectable effect in vivo. Moreover, a recently solved crystal structure of the N-terminal part of a/TIF32 pointed to two Box37 residues, Arg363 and Lys364, both proposed to contribute to one of the positive, potentially RNA-binding areas on the a/TIF32 surface. The fact that also their substitutions with alanines severely impaired the mRNA recruitment...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:321098 |
Date | January 2013 |
Creators | Vlčková, Vladislava |
Contributors | Valášek, Leoš, Mašek, Tomáš |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.2796 seconds