Return to search

Preparation of Inorganic Tubular Membranes and Their Applications in Treatment of Chemical Mechanical Polishing

In this study, the wastewater from oxide chemical mechanical polishing (oxide-CMP) process of semiconductor wafer fabrication was treated by crossflow electro-ultrafiltration with self-prepared tubular inorganic membranes. First of all, a recipe of alumina (72 wt%), bentonite (8 wt%) and water (20 wt%) was determined for the extrusion of green tubes. The porous ceramic green tubes of 200 mm in length thus obtained were subjected to further curing, drying, and sintering processes. The inner and outer radii of the porous ceramic supports were 6.0 mm and 10.0 mm, respectively. Then, nanoscale TiO2 (i.e., the slip) was prepared by sol-gel method. On the tops of porous ceramic supports thin layers of nanoscale TiO2 were applied by the dip-coating method. To analyze the microstructures of tubular inorganic membranes and confirm the nanoscale TiO2 films, a scanning electron microscope equipped with energy-dispersive X-ray analyzer (SEM-EDS) and X-ray diffractometer (XRD) were employed. The self-prepared tubular inorganic composite membranes (TICMs) were futher characterized by permporometry and Kelvin equation to determine their pore size distributions and nominal pore sizes. In addition, through the employment of polyethylene glycol (PEG) of different molecular weights and total organic carbon analysis method, the molecular weight cut-off (MWCO) and tightness coefficient of each TICM was determined. It was found that the self-prepared TICMs were suitable for ultrafiltration applications. In this work, wastewater from the oxide-CMP process of semiconductor wafer fabrication was treated by crossflow electro-ultrafiltration with self- prepared TICMs. The permeate qualities were evaluated. Experimental results have shown that permeate of a higher filtration rate, a turbidity of below 1 NTU, 90% removal of total suspended solids, and a removal efficiency of greater than 80% for soluable silica could be obtained under the conditions of an electric filed strength of 30 V/cm and transmembrane pressure of 5 kgf/cm2. For permeate to meet the feed water requirements for the ultrapure water system, it has to be further treated to lower its silica content to ¡Ø 6 mg/L. Overall speaking, by incorporation of the tubular inorganic composite membranes prepared in this work into the novel electrofiltration treatment module for the treatment of oxide-CMP wastewater would yield permeate suitable for the purpose of reclamation.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0212106-193312
Date12 February 2006
CreatorsLi, Cyuan-jia
ContributorsShang-Lien Lo, Yuan-Yao Li, Gordon C. C. Yang
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0212106-193312
Rightswithheld, Copyright information available at source archive

Page generated in 0.0018 seconds