Return to search

Preparation and characterization of Cu2-xZn1+ySnS4 for thin films solar cells

CZTS non-stoichiometric thin films [Cu2-xZn1+xSnS4)] for solar cells applications have been successfully deposited on glass substrates using two different types of synthesis and two effective deposition methods: dip coating into a sol or drop-wise ink spin-coating. For dip-coating, a sol was prepared by mixing a solution of metal chlorides dissolved in methanol together with thiourea dissolved in ethylene glycol; tin chloride (either pentahydrate or anhydrous) was used as a tin source. The ink for spin-coating was prepared by hot-injection, starting from metal (copper, tin and zinc) chlorides like in the previous synthesis: the salts, dissolved in oleylamine, were heated at 130 °C, when a solution of pure sulfur in oleylamine was injected. The CZTS thin films samples from both methods have been recrystallized by two thermal treatments, respectively with and without an extra sulfur powder at 550 °C in Ar atmosphere. Treatment duration was shown to affect both structure and microstructure of CZTS coatings. Moreover, the optical properties of the final absorbing layers were also deeply affected by the type and length of thermal treatments. Spurious phases like SnO2, SnS and ZnS, were produced in some cases, and identified as a possible culprit for poor CZTS photovoltaic device efficiency. Based on the extensive evidence collected during this research work, the present Thesis provides a rationale for an effective preparation of kesterite thin films for photovoltaic applications.

Identiferoai:union.ndltd.org:unitn.it/oai:iris.unitn.it:11572/367797
Date January 2016
CreatorsD'Angelo Bandres, Renato
ContributorsD'Angelo Bandres, Renato, Leoni, Matteo, Scardi, Paolo
PublisherUniversità degli studi di Trento, place:TRENTO
Source SetsUniversità di Trento
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/openAccess
Relationfirstpage:1, lastpage:97, numberofpages:97

Page generated in 0.0019 seconds