Return to search

Characterization of lnGaAs/InP Heterostructure Nanowires Grown by Gas Source Molecular Beam Epitaxy

<p> InGaAs/InP heterostructure nanowires (NWs) grown by gas source molecular beam epitaxy (GS-MBE) have been analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDS). The morphology and interfacial properties of these structures have been compared to pure InP NWs and lattice-matched InGaAs!InP superlattice (SL) structures, respectively. Based on high-resolution x-ray diffraction (HRXRD) and photoluminescence (PL) measurements of the SLs a detailed structural model is proposed, consisting of strained InAsP and InGaAsP mono layers due to group-V gas switching and atomic exchange at the SL interfaces. The interfaces of the heterostructure NW s were an order of magnitude larger than those of the SLs and showed a distinct bulging morphology. Both of these characteristics are explained based on the slow purging of group-III material from the Au catalyst. Growth of lnGaAs on the sidewalls of the InP base of these wires was also observed, and occurs due to the shorter diffusion length of Ga adatoms as compared to In. </p> / Thesis / Master of Science (MSc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/21737
Date06 1900
CreatorsCornet, David
ContributorsLaPierre, R. R., None
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish

Page generated in 0.3108 seconds