La demande croissante pour les services de cloud computing encourage les opérateurs à optimiser l’utilisation des ressources dans les grappes d’ordinateurs. Cela motive le développement de nouvelles technologies qui rendent plus flexible la gestion des ressources. Cependant, exploiter cette flexibilité pour réduire le nombre d’ordinateurs nécessite aussi des algorithmes de gestion des ressources efficaces et dont la performance est prédictible sous une demande stochastique. Dans cette thèse, nous concevons et analysons de tels algorithmes en utilisant le formalisme de la théorie des files d’attente.Notre abstraction du problème est une file multi-serveur avec plusieurs classes de clients. Les capacités des serveurs sont hétérogènes et les clients de chaque classe entrent dans la file selon un processus de Poisson indépendant. Chaque client peut être traité en parallèle par plusieurs serveurs, selon des contraintes de compatibilité décrites par un graphe biparti entre les classes et les serveurs, et chaque serveur applique la politique premier arrivé, premier servi aux clients qui lui sont affectés. Nous prouvons que, si la demande de service de chaque client suit une loi exponentielle indépendante de moyenne unitaire, alors la performance moyenne sous cette politique simple est la même que sous l’équité équilibrée, une extension de processor-sharing connue pour son insensibilité à la loi de la demande de service. Une forme plus générale de ce résultat, reliant les files order-independent aux réseaux de Whittle, est aussi prouvée. Enfin, nous développons de nouvelles formules pour calculer des métriques de performance.Ces résultats théoriques sont ensuite mis en pratique. Nous commençons par proposer un algorithme d’ordonnancement qui étend le principe de round-robin à une grappe où chaque requête est affectée à un groupe d’ordinateurs par lesquels elle peut ensuite être traitée en parallèle. Notre seconde proposition est un algorithme de répartition de charge à base de jetons pour des grappes où les requêtes ont des contraintes d’affectation. Ces deux algorithmes sont approximativement insensibles à la loi de la taille des requêtes et s’adaptent dynamiquement à la demande. Leur performance peut être prédite en appliquant les formules obtenues pour la file multi-serveur. / The growing demand for cloud-based services encourages operators to maximize resource efficiency within computer clusters. This motivates the development of new technologies that make resource management more flexible. However, exploiting this flexibility to reduce the number of computers also requires efficient resource-management algorithms that have a predictable performance under stochastic demand. In this thesis, we design and analyze such algorithms using the framework of queueing theory.Our abstraction of the problem is a multi-server queue with several customer classes. Servers have heterogeneous capacities and the customers of each class enter the queue according to an independent Poisson process. Each customer can be processed in parallel by several servers, depending on compatibility constraints described by a bipartite graph between classes and servers, and each server applies first-come-first-served policy to its compatible customers. We first prove that, if the service requirements are independent and exponentially distributed with unit mean, this simple policy yields the same average performance as balanced fairness, an extension to processor-sharing known to be insensitive to the distribution of the service requirements. A more general form of this result, relating order-independent queues to Whittle networks, is also proved. Lastly, we derive new formulas to compute performance metrics.These theoretical results are then put into practice. We first propose a scheduling algorithm that extends the principle of round-robin to a cluster where each incoming job is assigned to a pool of computers by which it can subsequently be processed in parallel. Our second proposal is a load-balancing algorithm based on tokens for clusters where jobs have assignment constraints. Both algorithms are approximately insensitive to the job size distribution and adapt dynamically to demand. Their performance can be predicted by applying the formulas derived for the multi-server queue.
Identifer | oai:union.ndltd.org:theses.fr/2019IPPAT001 |
Date | 24 September 2019 |
Creators | Comte, Céline |
Contributors | Institut polytechnique de Paris, Bonald, Thomas, Mathieu, Fabien |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0025 seconds