The United Nations’ Sustainable Development Goal 7 (SDG7) of Agenda 2030 calls for an increase in the use of renewable energy sources, among other targets. The percentage of fossil fuel-fired thermal generation for electricity is increasingly being reduced as renewable energy technologies (RET) advance in cost-competitiveness, and as greenhouse gas and industrial air pollutant emission limits become more stringent. In certain cases, renewable energy contributes to energy security by improving a nation’s trade balance, since local resources are harnessed and imports are reduced. RET investments are becoming more frequent gaining a sizeable share in the electric power mix of numerous countries. However, RET is affected by existing fossil fuel-fired electricity generation, especially in countries that have domestic reserves. While coal may be dirty, others such as natural gas provide multiple benefits, presenting a challenge to renewables. Additionally, RET endowment varies for each geographical location. This often does not correspond to the location of major electricity demand centers. Therefore, large scale RET adoption and integration becomes logistically more cumbersome, as it necessitates existence of a developed grid network. Utilizing a series of analyses in two different settings – Africa and Cyprus – this thesis draws insights on RET growth policy and the level of technology representation in long term energy models. In order to capture specific challenges of RET integration, enhancements in traditional long-term energy system models are called for and carried out. The case of Africa is used to assess adoption of RET under various trade scenarios. It is home to some of the world’s greatest RET resource potential and the single largest potential RET project, Grand Inga. While, the island of Cyprus has goals of introducing large percentages of RET into its electric power mix. Each have important idiosyncrasies which are reflected in the analysis. On the one hand, natural gas competes with RET in Cyprus and forms a key transition fuel away from oil. On the other hand, lack of cross-border interconnectors limit RET project development across Africa. / <p>QC 20170519</p>
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-207364 |
Date | January 2017 |
Creators | Taliotis, Constantinos |
Publisher | KTH, Energisystemanalys |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds