Return to search

Structural health monitoring of Attridge Drive overpass

Vibration-based damage detection (VBDD) comprises a family of non-destructive testing methods in which changes to dynamic characteristics are used to track the condition of a structure. Although VBDD methods have been successfully applied to various mechanical systems and to simple beam-like structures, significant challenges remain in extending this technology to complex, spatially distributed structures such as bridges. <p> In the present study, numerical simulations using a calibrated finite element model were used to investigate the use of VBDD methods to detect small-scale damage on a two-span, integral abutment overpass structure located in Saskatoon, Saskatchewan. The small scale damage was defined in this study as the removal of a concrete element from the top surface of the bridge deck, resembling the spalled clear cover of concrete deck of the overpass. Five different VBDD techniques were evaluated, including the Change in Mode Shape, Change in Flexibility, Change in Mode Shape Curvature, Change in Uniform Flexibility Curvature and Damage index methods. In addition, the influence of the size of damage, the orientation of damage geometry, sensor spacing (3 m, 5 m and 7.5 m), the approach used for mode shape normalization, and uncertainty in the measured mode shapes was investigated. <p> It was found that localized damage could be reliably detected and located if the sensors were located within 3 m of the damage (the distance between adjacent girders) and if uncertainty in the mode shapes was attenuated through the use of a sufficient number of repeated trials. Furthermore, studies using a limited sensor installation that could be achieved without interrupting the flow of traffic indicated that small scale damage could be detected and potentially located using sensors that are placed well away from the damaged area, provided uncertainty in mode shape was attenuated.

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-08312008-135832
Date05 September 2008
CreatorsSiddique, Abu Bakkar
ContributorsSparling, Bruce F., Putz, Gordon, Hosain, Mel U., Fotouhi, Reza, Feldman, Lisa, Boulfiza, Mohamed, Wegner, Leon D.
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-08312008-135832/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0018 seconds