In this dissertation, a hybrid volume and surface integral equation is used to solve scattering problems. It is implemented with RWG basis on the surface and the edge basis in the volume. Numerical results shows the correctness of the hybrid VSIE in inhomogeneous medium. The MLFMM method is also implemented for the new VSIEs.
Further more, a synthetic apature radar imaging method is used in a 2D microwave imaging for complex objects. With the mono-static and bi-static interpolation scheme, a 2D FFT is applied for the imaging with the data simulated with VSIE method. Then we apply a background cancelling scheme to improve the imaging quality for the targets in interest. Numerical results shows the feasibility of applying the background canceling into wider applications.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:ece_etds-1065 |
Date | 01 January 2014 |
Creators | Cao, Xiande |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations--Electrical and Computer Engineering |
Page generated in 0.0019 seconds