Return to search

Algorithms for trigonometric polynomial and rational approximation

This thesis presents new numerical algorithms for approximating functions by trigonometric polynomials and trigonometric rational functions. We begin by reviewing trigonometric polynomial interpolation and the barycentric formula for trigonometric polynomial interpolation in Chapter 1. Another feature of this chapter is the use of the complex plane, contour integrals and phase portraits for visualising various properties and relationships between periodic functions and their Laurent and trigonometric series. We also derive a periodic analogue of the Hermite integral formula which enables us to analyze interpolation error using contour integrals. We have not been able to find such a formula in the literature. Chapter 2 discusses trigonometric rational interpolation and trigonometric linearized rational least-squares approximations. To our knowledge, this is the first attempt to numerically solve these problems. The contribution of this chapter is presented in the form of a robust algorithm for computing trigonometric rational interpolants of prescribed numerator and denominator degrees at an arbitrary grid of interpolation points. The algorithm can also be used to compute trigonometric linearized rational least-squares and trigonometric polynomial least-squares approximations. Chapter 3 deals with the problem of trigonometric minimax approximation of functions, first in a space of trigonometric polynomials and then in a set of trigonometric rational functions. The contribution of this chapter is presented in the form of an algorithm, which to our knowledge, is the first description of a Remez-like algorithm to numerically compute trigonometric minimax polynomial and rational approximations. Our algorithm also uses trigonometric barycentric interpolation and Chebyshev-eigenvalue based root finding. Chapter 4 discusses the Fourier-Padé (called trigonometric Padé) approximation of a function. We review two existing approaches to the problem, both of which are based on rational approximations of a Laurent series. We present a numerical algorithm with examples and compute various type (m, n) trigonometric Padé approximants.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:730457
Date January 2016
CreatorsJaved, Mohsin
ContributorsTrefethen, Nick
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://ora.ox.ac.uk/objects/uuid:23a36d72-0299-4c63-98e8-d0aa088c062e

Page generated in 0.0018 seconds