Return to search

Wavelets and singular integral operators.

by Lau Shui-kong, Francis. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (leaves 95-98). / Abstracts in English and Chinese. / Chapter 1 --- General Theory of Wavelets --- p.8 / Chapter 1.1 --- Introduction --- p.8 / Chapter 1.2 --- Multiresolution Analysis and Wavelets --- p.9 / Chapter 1.3 --- Orthonormal Bases of Compactly Supported Wavelets --- p.12 / Chapter 1.3.1 --- Example : The Daubechies Wavelets --- p.15 / Chapter 1.4 --- Wavelets in Higher Dimensions --- p.20 / Chapter 1.4.1 --- Tensor product method --- p.20 / Chapter 1.4.2 --- Multiresolution Analysis in Rd --- p.21 / Chapter 1.5 --- Generalization to frames --- p.25 / Chapter 2 --- Wavelet Bases Numerical Algorithm --- p.27 / Chapter 2.1 --- The Algorithm in Wavelet Bases --- p.27 / Chapter 2.1.1 --- Definitions and Notations --- p.28 / Chapter 2.1.2 --- Fast Wavelet Transform --- p.31 / Chapter 2.2 --- Wavelet-Based Quadratures --- p.33 / Chapter 2.3 --- "The Integral Operator, Standard and Non-standard Form" --- p.39 / Chapter 2.3.1 --- The Standard Form --- p.40 / Chapter 2.3.2 --- The Non-standard Form --- p.41 / Chapter 2.4 --- The Calderon-Zygmund Operator and Numerical Cal- culation --- p.45 / Chapter 2.4.1 --- Numerical Algorithm to Construct the Non- standard Form --- p.45 / Chapter 2.4.2 --- Numerical Calculation and Compression of Op- erators --- p.45 / Chapter 2.5 --- Differential Operators in Wavelet Bases --- p.48 / Chapter 3 --- T(l)-Theorem of David and Journe --- p.55 / Chapter 3.1 --- Definitions and Notations --- p.55 / Chapter 3.1.1 --- T(l) Operator --- p.56 / Chapter 3.2 --- The Wavelet Proof of the T(l)-Theorem --- p.59 / Chapter 3.3 --- Proof of the T(l)-Theorem (Continue) --- p.64 / Chapter 3.4 --- Some recent results on the T(l)-Theorem --- p.70 / Chapter 4 --- Singular Values of Compact Pseudodifferential Op- erators --- p.72 / Chapter 4.1 --- Background --- p.73 / Chapter 4.1.1 --- Singular Values --- p.73 / Chapter 4.1.2 --- Schatten Class Ip --- p.73 / Chapter 4.1.3 --- The Ambiguity Function and the Wigner Dis- tribution --- p.74 / Chapter 4.1.4 --- Weyl Correspondence --- p.76 / Chapter 4.1.5 --- Gabor Frames --- p.78 / Chapter 4.2 --- Singular Values of Lσ --- p.82 / Chapter 4.3 --- The Calderon-Vaillancourt Theorem --- p.87 / Chapter 4.3.1 --- Holder-Zygmund Spaces --- p.87 / Chapter 4.3.2 --- Smooth Dyadic Resolution of Unity --- p.88 / Chapter 4.3.3 --- The proof of the Calderon-Vaillancourt The- orem --- p.89 / Bibliography

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_322833
Date January 1999
ContributorsLau, Shui-kong Francis., Chinese University of Hong Kong Graduate School. Division of Mathematics.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, 98 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0017 seconds