Return to search

Predição temporal de links baseada na evolução de tríades

Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2017-08-23T13:07:27Z
No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
Dissertação Mestrado - Hugo Melo.pdf: 1798343 bytes, checksum: d102a68753cda64d92a83e2e985901d8 (MD5) / Made available in DSpace on 2017-08-23T13:07:27Z (GMT). No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
Dissertação Mestrado - Hugo Melo.pdf: 1798343 bytes, checksum: d102a68753cda64d92a83e2e985901d8 (MD5)
Previous issue date: 2016-08-25 / Atualmente, com o crescimento da área de inteligência artificial e devido à necessidade do estudo das redes sociais no mundo virtual, ficou em evidência a importância da análise dessas redes. Existem vários tipos de problemas que podem ser levantados nesse sentido, entre eles, o problema de Predição de Links dentro de uma rede social, tarefa associada à Análise de Redes Sociais. Atualmente as abordagens buscam observar algum tipo de padrão na rede, sendo esses padrões estruturais, de similaridades entre os indivíduos, estatísticos, até modelos mais complexos, como padrões temporais. Este trabalho tem como objetivo propor uma nova metodologia temporal, chamada de Predição Temporal de Links baseada na Evolução de Tríades, de modo a prover uma solução mais satisfatória e computacionalmente viável para o problema de Predição de Links. Para isto, foi criado um novo modelo temporal de dados, chamado de Tensor de Transições de Tríades, que serve de base para o cálculo de modelos de predição temporal estatística de séries temporais. Este modelo foi concebido a partir da análise das principais abordagens vistas na literatura e identificação das suas vantagens e limitações. Os resultados obtidos mostraram que, em relação às abordagens de trabalhos relacionados, houve uma considerável melhora na qualidade da predição ao utilizar o modelo criado. / Nowadays, with the development of artificial intelligence and the need to study virtual social networks, the importance of the analysis of such networks has grown. There are many problems that arise when studying these networks, including the Link Prediction problem in a social network, a task associated with Social Network Analysis. The current state-of-the-art on Link Prediction seeks to find a hidden pattern in the network, including structural patterns, similarities and statistical characteristics and evolving to more complex models, like temporal patterns. This work aims to create a new temporal method, called Temporal Link Prediction based on Triads Evolution, which provides a more satisfactory and efficient solution for the Link Prediction problem. To achieve this goal, a new temporal data model, the Triad Transition Tensor, was created and used as a source to compute temporal forecasting statistic models based on time series. This method was conceived from a wide analysis of the state-of-the-art of the Link Prediction methods and identifying it’s advantages and limitations. The results in this work show that, compared to other methods found in related works, there was a considerable improvement in the quality of the predictions when using the proposed method.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufpe.br:123456789/20829
Date25 August 2016
CreatorsMELO, Hugo Neiva de
Contributorshttp://lattes.cnpq.br/2984888073123287, PRUDÊNCIO, Ricardo Bastos Cavalcante
PublisherUniversidade Federal de Pernambuco, Programa de Pos Graduacao em Ciencia da Computacao, UFPE, Brasil
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UFPE, instname:Universidade Federal de Pernambuco, instacron:UFPE
RightsAttribution-NonCommercial-NoDerivs 3.0 Brazil, http://creativecommons.org/licenses/by-nc-nd/3.0/br/, info:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds