Return to search

Cooperative adaptive cruise control : a learning approach

Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2008-2009 / L'augmentation dans les dernières décennies du nombre de véhicules présents sur les routes ne s'est pas passée sans son lot d'impacts négatifs sur la société. Même s'ils ont joué un rôle important dans le développement économique des régions urbaines à travers le monde, les véhicules sont aussi responsables d'impacts négatifs sur les entreprises, car l'inefficacité du ot de traffic cause chaque jour d'importantes pertes en productivité. De plus, la sécurité des passagers est toujours problématique car les accidents de voiture sont encore aujourd'hui parmi les premières causes de blessures et de morts accidentelles dans les pays industrialisés. Ces dernières années, les aspects environnementaux ont aussi pris de plus en plus de place dans l'esprit des consommateurs, qui demandent désormais des véhicules efficaces au niveau énergétique et minimisant leurs impacts sur l'environnement. évidemment, les gouvernements de pays industrialisés ainsi que les manufacturiers de véhicules sont conscients de ces problèmes et tentent de développer des technologies capables de les résoudre. Parmi les travaux de recherche en ce sens, le domaine des Systèmes de Transport Intelligents (STI) a récemment reçu beaucoup d'attention. Ces systèmes proposent d'intégrer des systèmes électroniques avancés dans le développement de solutions intelligentes conçues pour résoudre les problèmes liés au transport automobile cités plus haut. Ce mémoire se penche donc sur un sous-domaine des STI qui étudie la résolution de ces problèmes gr^ace au développement de véhicules intelligents. Plus particulièrement, ce mémoire propose d'utiliser une approche relativement nouvelle de conception de tels systèmes, basée sur l'apprentissage machine. Ce mémoire va donc montrer comment les techniques d'apprentissage par renforcement peuvent être utilisées afin d'obtenir des contrôleurs capables d'effectuer le suivi automatisés de véhicules. Même si ces efforts de développement en sont encore à une étape préliminaire, ce mémoire illustre bien le potentiel de telles approches pour le développement futur de véhicules plus \intelligents". / The impressive growth, in the past decades, of the number of vehicles on the road has not come without its share of negative impacts on society. Even though vehicles play an active role in the economical development of urban regions around the world, they unfortunately also have negative effects on businesses as the poor efficiency of the traffic ow results in important losses in productivity each day. Moreover, numerous concerns have been raised in relation to the safety of passengers, as automotive transportation is still among the first causes of accidental casualties in developed countries. In recent years, environmental issues have also been taking more and more place in the mind of customers, that now demand energy-efficient vehicles that limit the impacts on the environment. Of course, both the governments of industrialized countries and the vehicle manufacturers have been aware of these problems, and have been trying to develop technologies in order to solve these issues. Among these research efforts, the field of Intelligent Transportation Systems (ITS) has been gathering much interest as of late, as it is considered an efficient approach to tackle these problems. ITS propose to integrate advanced electronic systems in the development of intelligent solutions designed to address the current issues of automotive transportation. This thesis focuses on a sub-field ITS since it studies the resolution of these problems through the development of Intelligent Vehicle (IV) systems. In particular, this thesis proposes a relatively novel approach for the design of such systems, based on modern machine learning. More specifically, it shows how reinforcement learning techniques can be used in order to obtain an autonomous vehicle controller for longitudinal vehiclefollowing behavior. Even if these efforts are still at a preliminary stage, this thesis illustrates the potential of using these approaches for future development of \intelligent" vehicles.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/20718
Date16 April 2018
CreatorsDesjardins, Charles
ContributorsChaib-Draa, Brahim
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
Typemémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise
Format207 p., application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0025 seconds