We investigate the computational complexity of several decision, enumeration and counting problems related to pseudo-intents. We show that given a formal context and a set of its pseudo-intents, checking whether this context has an additional pseudo-intent is in conp and it is at least as hard as checking whether a given simple hypergraph is saturated. We also show that recognizing the set of pseudo-intents is also in conp and it is at least as hard as checking whether a given hypergraph is the transversal hypergraph of another given hypergraph. Moreover, we show that if any of these two problems turns out to be conp-hard, then unless p = np, pseudo-intents cannot be enumerated in output polynomial time. We also investigate the complexity of finding subsets of a given Duquenne-Guigues Base from which a given implication follows. We show that checking the existence of such a subset within a specified cardinality bound is np-complete, and counting all such minimal subsets is #p-complete.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:79510 |
Date | 16 June 2022 |
Creators | Sertkaya, Barış |
Publisher | Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/acceptedVersion, doc-type:report, info:eu-repo/semantics/report, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | urn:nbn:de:bsz:14-qucosa2-785040, qucosa:78504 |
Page generated in 0.0021 seconds