Return to search

Characteristics of Hurricane Lili's Intensity Changes

Rapid intensity changes of Hurricane Lili in the Gulf of Mexico (GOM) were studied in three distinct ways: climatology, satellite remote sensing, and surface meteorological and oceanographic measurements. Each research methodology provided insight about Hurricane Lili's intensity behavior.
A climatology of rapid and explosive intensifications of hurricanes was developed using minimum central pressure observations for the Atlantic tropical cyclone record. Results showed these events were frequent, especially in the GOM. The majority of intensification events occurred ≤ 24 h before landfall, with a third to one-half ≤ 12 h. Lili emerged anomalous as the only hurricane to weaken at a greater rate (+17 hPa over 6 h or +2.83 hPa h<sup>-1</sup>) than its rapid intensification event rate (-13 hPa over 6 h or -2.16 hPa h<sup>-1</sup>).
GOES-8 satellite water vapor brightness temperature data were investigated using a -24°C vapor front to delineate a dry air mass west of Lili. Drier air was shown to affect Lili during a rapid weakening phase after the two features were less than 250 km mean or 215 km minimum distance apart. These critical distances are offered as a criterion for a relationship between tropical cyclone weakening and dry air advection. During the time periods where Lili was intensifying or maintaining intensity, this vapor front exhibited more complex signatures of definitive breaks, shape changes, and protrusions. During the rapid weakening phase and when the two features were the greatest distance apart, the vapor front resembled a smooth, strong boundary line. The dry air mass was shown to have the greatest effect upon Lili after the rapid intensification phases.
SST and heat flux calculations illustrated that oceanic contributions to hurricane intensity were more significant during rapid intensification periods. Ocean heat content directly under the center was more vital as seen in Lili's second rapid intensification phase occurring directly over the GOM Loop Current. Although Tropical Storm Isidore cooled surface water temperatures by around 1°C, pre-Isidore water temperature levels were shown to increase latent heat flux values by > 100 W m<sup>-2</sup> (+ 40%) over observed values during Lili's weakening phase.

Identiferoai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-11082004-100236
Date08 November 2004
CreatorsBabin, Adele Marie
ContributorsShih-Ang Hsu, Nan D. Walker, Barry Keim
PublisherLSU
Source SetsLouisiana State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lsu.edu/docs/available/etd-11082004-100236/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0016 seconds