Return to search

Network interdependence and information dynamics in cyber-physical systems

abstract: The cyber-physical systems (CPS) are emerging as the underpinning technology for major industries in the 21-th century. This dissertation is focused on two fundamental issues in cyber-physical systems: network interdependence and information dynamics. It consists of the following two main thrusts. The first thrust is targeted at understanding the impact of network interdependence. It is shown that a cyber-physical system built upon multiple interdependent networks are more vulnerable to attacks since node failures in one network may result in failures in the other network, causing a cascade of failures that would potentially lead to the collapse of the entire infrastructure. There is thus a need to develop a new network science for modeling and quantifying cascading failures in multiple interdependent networks, and to develop network management algorithms that improve network robustness and ensure overall network reliability against cascading failures. To enhance the system robustness, a "regular" allocation strategy is proposed that yields better resistance against cascading failures compared to all possible existing strategies. Furthermore, in view of the load redistribution feature in many physical infrastructure networks, e.g., power grids, a CPS model is developed where the threshold model and the giant connected component model are used to capture the node failures in the physical infrastructure network and the cyber network, respectively. The second thrust is centered around the information dynamics in the CPS. One speculation is that the interconnections over multiple networks can facilitate information diffusion since information propagation in one network can trigger further spread in the other network. With this insight, a theoretical framework is developed to analyze information epidemic across multiple interconnecting networks. It is shown that the conjoining among networks can dramatically speed up message diffusion. Along a different avenue, many cyber-physical systems rely on wireless networks which offer platforms for information exchanges. To optimize the QoS of wireless networks, there is a need to develop a high-throughput and low-complexity scheduling algorithm to control link dynamics. To that end, distributed link scheduling algorithms are explored for multi-hop MIMO networks and two CSMA algorithms under the continuous-time model and the discrete-time model are devised, respectively. / Dissertation/Thesis / Ph.D. Electrical Engineering 2012

Identiferoai:union.ndltd.org:asu.edu/item:16041
Date January 2012
ContributorsQian, Dajun (Author), Zhang, Junshan (Advisor), Ying, Lei (Committee member), Zhang, Yanchao (Committee member), Cochran, Douglas (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral Dissertation
Format220 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.002 seconds