Return to search

Studies of radiation damaged gallium arsenide using coherent acoustic phonon spectroscopy

The operation and properties of semiconductor devices depends critically on a materials electronic structure. Point defects, such as vacancy and interstitial defects that arise from operation in radiative atmospheres or during less-than-ideal growth processes, have a significant influence on electronic material properties and tend to degrade device operation. Here we show that a novel ultrafast time-resolved pump-probe technique, known as coherent acoustic phonon spectroscopy, is capable of non-destructive, quantitative, depth-dependent measurement of point defect profiles arising from ion irradiation in gallium arsenide. In the CAP response, defects are observable through reduction of the CAP oscillation amplitude, which is demonstrated to be connected to a decrease in the photoelastic constant at the 1.42 eV GaAs band-edge caused by defect-induced lattice strain. Finally, we present theoretical calculations that support our proposed model and agree well with experimental observations

Identiferoai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-05262010-124352
Date01 June 2010
CreatorsSteigerwald, Andrew David
ContributorsKalman Varga, Richard Mu, Norman Tolk, Sandra Rosenthal, Jim Davidson
PublisherVANDERBILT
Source SetsVanderbilt University Theses
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.vanderbilt.edu/available/etd-05262010-124352/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0379 seconds