Return to search

Highly efficient infrared photodetectors based on plasmonic metamaterials and vanadium dioxide

Current generation infrared (IR) photodetection requires a tradeoff between sensitivity and practicality. For applications requiring high sensitivity, the available options require varying levels of expensive and bulky cryocooling to reduce noise or to enable detection. Cheaper, more portable devices suffer from low quantum efficiencies or relatively slow recovery speeds. Computational and experimental studies have been performed to investigate the possibility of realizing a highly efficient, room temperature IR photodetector through plasmonic enhancement of a vanadium dioxide (VO2) bolometer. By incorporating metamaterial and plasmonic antenna geometries exhibiting near unity absorption and high field confinement, the photon flux requirement for a detection event can be significantly reduced. Several geometries were explored with promising theoretical performance, and improvements to these designs are suggested based on initial experimental results.

Identiferoai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-11242014-182737
Date26 November 2014
CreatorsZufelt, Kyle Benjamin
ContributorsSharon Weiss, Jason G. Valentine
PublisherVANDERBILT
Source SetsVanderbilt University Theses
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.vanderbilt.edu/available/etd-11242014-182737/
Rightsrestrictsix, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.01 seconds