Return to search

Plasmon-Exciton Coupling Dynamics in Metal-ZnO Nanostructures

<p> Zinc oxide films or quantum wells and plasmonic elements, comprising rough metal films and nano-cylinder arrays of Ag, Al or Au, constitute an especially interesting model system for studying plasmon-exciton interactions. This dissertation focuses on the energetics, dynamics and control of the coupling between band-edge excitons and luminescent defect complexes in ZnO thin films and quantum wells, on the one hand, and localized or propagating plasmons in metallic films and nanostructures on the other.
<p> Multilayer structures of ZnO, MgO, and Ag or Au with varying thicknesses of MgO provide a workbench for analyzing interactions as a function of plasmon-emitter separation. In particular, the coupling of Ag and Au SPPs to excitons via Purcell-like interactions, and the dipole-dipole scattering of Ag and Au LSPs with ZnO DAPs were analyzed via photoluminescence and pump probe spectroscopy. Simultaneous transmission and reflection pump-probe spectroscopy performed on samples annealed under varying conditions provided an understanding of the ZnO defect dynamics, and demonstrated the dramatic Purcell enhancement of a long-lived Zn interstitial defect state. The selective decay rate enhancement of individual quantum emitters by tunable surface plasmon resonances should make available emitters currently too inefficient to be commercially practical.
<p> Aluminum nanodisc arrays deposited on ZnO/Zn0.85Mg0.15O single quantum wells provided a flexible template for the investigation of LSP-exciton coupling. By optimizing the LSP resonance and the QW emission, heterostructures were fabricated that demonstrated a hybridized Al LSP quadrupole รข ZnO QW exciton state in the confocal extinction spectra, a strong coupling phenomenon that provides the foundation for the fabrication of nano-designed heterostructures with tunable dielectric functions throughout the near to mid ultraviolet spectrum.

Identiferoai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-08012011-133631
Date02 August 2011
CreatorsLawrie, Benjamin J.
ContributorsRichard Mu, Richard Haglund, Kalman Varga, David Cliffel, Shane Hutson
PublisherVANDERBILT
Source SetsVanderbilt University Theses
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.vanderbilt.edu/available/etd-08012011-133631/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0071 seconds