Return to search

Photosystem I Based Systems for Photoelectrochemical Energy Conversion

This dissertation investigates the incorporation of Photosystem I (PSI), a supramolecular protein complex that participates in the light reactions of photosynthesis, into electrochemical systems intended for the conversion of photonic energy into chemical energy and electricity. First, I describe the fabrication of nanoporous gold leaf electrode films and detail the process by which they are decorated with PSI complexes. I further explain how the feature size of the substrate must be tuned such that the pores may accommodate multiple PSI complexes in order to produce enhanced photocurrent with respect to a planar electrode. Second, I develop a kinetic model for the photocatalytic effect produced by a monolayer of PSI on a planar electrode. I solve the resulting system of partial differential equations numerically and use the simulation to extract kinetic parameters from experimental data. Third, I describe the construction of stand-alone PSI-based photoelectrochemical cells, demonstrate their light transduction capabilities, and show that the devices continue to produce photocurrent for at least 9 months after their fabrication. Fourth, I present a method to deposit multilayer films of PSI by vacuum-assisted assembly. I characterize the resulting films optically and electrochemically and show that photocurrent production increases with thickness of the films. Furthermore, I demonstrate the largest photocurrent responses of the films are produced in response to irradiation by light of wavelengths that correspond to peaks in the films absorbance spectra. Finally, I offer general perspectives conclusions about the results presented herein and outline future directions in which this project may progress.

Identiferoai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-08172010-154539
Date20 August 2010
CreatorsCiesielski, Peter Nolan
ContributorsDavid E. Cliffel, Paul E. Laibinis, Norman H. Tolk, Sharon M. Weiss, G. Kane Jennings
PublisherVANDERBILT
Source SetsVanderbilt University Theses
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.vanderbilt.edu/available/etd-08172010-154539/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0025 seconds