This paper presents a new object detection method. The method is based on keypoints analysis and their parameters. Computed parameters are used for building a decision model using machine learning methods. The model is able to detect object in the picture based on input data and compares its similarity to the chosen example. The new method is described in detail, its accuracy is evaluated and this accuracy is compared to other existing detectors. The new method’s detection ability is by more than 40% better than detection ability of detectors like SURF. In order to understand the object detection this paper describes the process step by step including popular algorithms designed for specific roles in each step.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:220409 |
Date | January 2015 |
Creators | Jelínek, Ondřej |
Contributors | Uher, Václav, Burget, Radim |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0017 seconds