Dans cette thèse, nous proposons un modèle pour le calcul des écoulements le long des failles. Ce modèle, baptisé modèle double interface permet de traiter deux difficultés majeures rencontrées lors de la modélisation des failles. Tout d'abord, l'utilisation d'un modèle interface, dans lequel les failles sont représentées par des éléments de dimension inférieure permet de s'affranchir du problème d'échelle spatiale. Ensuite, l'utilisation de deux interfaces pour représenter chaque faille permet de traiter naturellement les maillages non-conformes apparaissant dans ce type de problème. Les questions de failles non-planes et de réseaux de failles sont aussi abordées. Ce modèle est validé numériquement sur différents cas tests académiques et un cas synthétique inspiré du stockage du CO2 a aussi été réalisé. Finalement, une étude théorique a été menée afin de confirmer mathématiquement l'approche retenue. / In this thesis, we are interested in the modelisation of fluid flow along conductive faults. This model, so-called double interface model tackles two majors difficulties encountered when modelising faults. First of all, the use of an interface model, in which the faults are represented by lower dimension elements allows to treat the problem of space scale. Then, the use of two interfaces to modelise each fault allows to handle quite naturally the non-matching grid problem arising from this kind of problem. The question of non-planar fault and fault networks is also addressed. This model is then validated on several academic test cases and a synthetic case inspire by CO2 storage is also performed. Finally, a theoric study is also conducted in order to validate our approach.
Identifer | oai:union.ndltd.org:theses.fr/2012AIXM4809 |
Date | 15 February 2012 |
Creators | Tunc, Xavier |
Contributors | Aix-Marseille, Gallouët, Thierry |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds