Geomembranes are one of the most widely used geosynthetics in various civil engineering applications. Their primary function is as a barrier to liquid or vapour flow. Smooth Geomembranes are frequently used in combination with different soils, and due to their low surface roughness, are challenging to design to ensure adequate shear strength along the smooth geomembrane-soil interface. It is important to use the appropriate values of interface shear strength parameters in the design of slopes incorporating one or more geomembranes in contact with soils. The parameters are determined by conducting direct shear test on the geomembrane-soil interface. Laboratory tests of interface shear strength for geomembranes and soil are typically carried out with no provision for measurement of pore pressures at the soil/geomembrane interface. <p>This thesis deals with study of smooth geomembrane-soil interfaces, particularly under unsaturated conditions. The various factors that affect the interface shear behaviour are also studied. The tests were conducted using a modified direct shear box with a miniature pore pressure transducer installed adjacent to the surface of the geomembrane. Geomembranesoil interface shear tests were carried out with continuous measurement of suction in close proximity to the interface during the shearing process thus making it possible to analyze test results in terms of effective stresses. The method was found to be suitable for unsaturated soils at low values of matric suction. <p>Results of interface shear tests conducted using this method show that it is quite effective in evaluating interface shear behaviour between a geomembrane and an unsaturated soil. The results suggest that soil suction contributes to shearing resistance at low normal stress values. At lower normal stress values, the interface shear behaviour appears to be governed only by the magnitude of total normal stress. <p> At high normal stresses, the failure mechanism changed from soil particles sliding at the surface of geomembrane to soil particles getting embedded into the geomembrane and plowing trenches along the direction of shear. A plowing failure mechanism resulted in the mobilization of significantly higher shear strength at the geomembrane soil interface. It was found that placement water contents near saturated conditions results in lower effective stresses, a shallower plowing mechanism and lower values of mobilized interface shear strength.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:SSU.etd-12122005-150824 |
Date | 12 December 2005 |
Creators | Jogi, Manoj |
Contributors | Sharma, Jitendra, Gan, Julian, Fleming, Ian R., Barbour, S. Lee, Sparling, Bruce F. |
Publisher | University of Saskatchewan |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://library.usask.ca/theses/available/etd-12122005-150824/ |
Rights | unrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.0019 seconds