Epithelial ovarian cancer is a common female malignancy with a relatively high mortality rate worldwide. This may due to a lack of efficient diagnostic methods at early stage and worsen by complications caused by metastasis at advanced stage. For successful metastasis, cancer cells detached from the original growing sites have to survive in the body circulation before conquering a distant location within the body. Resistance to anoikis (apoptosis induced without appropriate extracellular matrix) is therefore utmost important during metastatic spreading. In addition, a pre-metastatic niche remodeled by cancer cells is also a pre-requisite for metastatic colonization. Emerging evidence has suggested the dysregulation of miRNAs is associated with different aspects of tumorigenesis. However, the specific roles of miRNAs in anoikis resistance and in remodeling of distant niche remain unknown thus far. This study attempted to investigate the functional roles of miR-141, in particularly anoikis resistance of ovarian cancer cells and the reprogramming of stromal cells. The miR-200 family is frequently upregulated and associated with human cancer metastasis. In this study, by cDNA array profiling together with biochemical and functional studies, miR-141, a member of miR-200 family, was identified as an oncomiR enhancing cell viability in low serum medium and anoikis resistance. Moreover, enforced expression of miR-141 led to bigger tumor sizes and promoted metastatic colonization in mouse models. Further studies demonstrated miR-141 directly targets tumor suppressive KLF12 in ovarian cancer cells, depletion of KLF12 could mimic function of miR-141. Clinical study revealed the upregulated miR-141 was significantly correlated with the downregulated KLF12, serous subtype, advanced and distant metastatic ovarian cancer. Furthermore, Genechip profiling, Human Apoptosis Array and Luciferase reporter assay revealed the upregulated miR-141 and downregulated KLF12 enhanced anoikis resistance via elevation of survivin which protect cells against intrinsic apoptotic activity. On the other aspect, miR-141 was found to be a secretary miRNA and commonly detected in the serum of ovarian cancer patients. The upregulated miR-141 expression was also correlated to levels of common cancer biomarker CA125. Importantly, the serum miR-141 level was significantly correlated with the tumor burden of patients during treatments, indicating it could be used as a non-invasive biomarker for ovarian cancers. Finally, based on miR-141 as tumor-secreted and circulated miRNA, a series of functional studies demonstrated that miR-141 could be transferred to hFF-1 fibroblast cells. Intriguingly, ovarian cancer cells cultured in miR-141-fibroblast culturing medium showed a remarkable increase of cell migration, suggesting that the remodeled-miR-141 fibroblast cells can secrete stimulating factors and promote ovarian cancer cells aggressiveness. This is the first study showing miR-141 could reprogram fibroblast cells to be a niche for ovarian cancer cell dissemination and metastatic progression. However, further investigations for verifying such functions are warranted. In conclusion, this study provides strong evidence that miR-141 is oncoMir enhancing ovarian cancer cell plasticity in metastasis e.g. anoikis resistance. Moreover, the finding of secretary form miR-141 not only gives the feasibility to be a potential biomarker for detecting ovarian cancer but also shows a possible mechanism of how miRNAs reprogram the distant niche for metastatic colonization. / published_or_final_version / Obstetrics and Gynaecology / Doctoral / Doctor of Philosophy
Identifer | oai:union.ndltd.org:HKU/oai:hub.hku.hk:10722/208037 |
Date | January 2014 |
Creators | Mak, Sze-ling, 麥詩翎 |
Contributors | Ngan, HYS, Chan, DW |
Publisher | The University of Hong Kong (Pokfulam, Hong Kong) |
Source Sets | Hong Kong University Theses |
Language | English |
Detected Language | English |
Type | PG_Thesis |
Rights | The author retains all proprietary rights, (such as patent rights) and the right to use in future works., Creative Commons: Attribution 3.0 Hong Kong License |
Relation | HKU Theses Online (HKUTO) |
Page generated in 0.0031 seconds