Return to search

High-Speed Low-Power Analog to Digital Converter for Digital Beam Forming Systems

abstract: Time-interleaved analog to digital converters (ADCs) have become critical components in high-speed communication systems. Consumers demands for smaller size, more bandwidth and more features from their communication systems have driven the market to use modern complementary metal-oxide-semiconductor (CMOS) technologies with shorter channel-length transistors and hence a more compact design. Downscaling the supply voltage which is required in submicron technologies benefits digital circuits in terms of power and area. Designing accurate analog circuits, however becomes more challenging due to the less headroom. One way to overcome this problem is to use calibration to compensate for the loss of accuracy in analog circuits.

Time-interleaving increases the effective data conversion rate in ADCs while keeping the circuit requirements the same. However, this technique needs special considerations as other design issues associated with using parallel identical channels emerge. The first and the most important is the practical issue of timing mismatch between channels, also called sample-time error, which can directly affect the performance of the ADC. Many techniques have been developed to tackle this issue both in analog and digital domains. Most of these techniques have high complexities especially when the number of channels exceeds 2 and some of them are only valid when input signal is a single tone sinusoidal which limits the application.

This dissertation proposes a sample-time error calibration technique which bests the previous techniques in terms of simplicity, and also could be used with arbitrary input signals. A 12-bit 650 MSPS pipeline ADC with 1.5 GHz analog bandwidth for digital beam forming systems is designed in IBM 8HP BiCMOS 130 nm technology. A front-end sample-and-hold amplifier (SHA) was also designed to compare with an SHA-less design in terms of performance, power and area. Simulation results show that the proposed technique is able to improve the SNDR by 20 dB for a mismatch of 50% of the sampling period and up to 29 dB at 37% of the Nyquist frequency. The designed ADC consumes 122 mW in each channel and the clock generation circuit consumes 142 mW. The ADC achieves 68.4 dB SNDR for an input of 61 MHz. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2017

Identiferoai:union.ndltd.org:asu.edu/item:44261
Date January 2017
ContributorsNazari, Ali (Author), Barnaby, Hugh James (Advisor), Jalali-Farahani, Bahar (Committee member), Bakkaloglu, Bertan (Committee member), Kitchen, Jennifer (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral Dissertation
Format88 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.0201 seconds