Return to search

Redes neurais artificiais aplicadas na previsão de preços do mercado spot de energia elétrica / Artificial neural networks applied on the forecast of the spot market prices for electricity.

A comercialização de energia elétrica no Brasil e no mundo sofreu diversas modificações nos últimos 20 anos. Com o objetivo de alcançar o equilíbrio econômico entre oferta e demanda do bem chamado eletricidade, os agentes deste mercado seguem as regras definidas pela sociedade (governo, empresas e consumidores) e também as leis da natureza (hidrologia). Para tratar de problemas tão complexos, estudos são realizados na área da heurística computacional. O objetivo deste trabalho é elaborar um software de previsão de preços do mercado spot utilizando redes neurais artificiais (RNA). As RNA são muito utilizadas em diversas aplicações, principalmente em heurística computacional, nas quais sistemas não lineares apresentam desafios computacionais difíceis de serem superados devido ao efeito da maldição da dimensionalidade. Tal maldição se deve pelo fato do poder computacional atual não ser suficiente para processar problemas com elevada combinação de variáveis. O problema de prever os preços do mercado spot depende de fatores como: (a) a previsão de demanda (carga); (b) a previsão da oferta (reservatórios, regime de chuvas e clima), fator de capacidade; e (c) o equilíbrio da economia (precificação, leilões, influência de mercados externos, política econômica, orçamento governamental, política governamental). Estes fatores são utilizados na construção do sistema de previsão e os resultados de sua eficácia são testados e apresentados. / The commercialization of electricity in Brazil as well as in the world has undergone several changes over the past 20 years. In order to achieve an economic balance between supply and demand of the good called electricity, stakeholders in this market follow both rules set by society (government, companies and consumers) and set by the laws of nature (hydrology). To deal with such complex issues, various studies have been conducted in the area of computational heuristics. This work aims to develop a software to forecast spot market prices in using artificial neural networks (ANN). ANNs are widely used in various applications especially in computational heuristics, where non-linear systems have computational challenges difficult to overcome because of the effect named curse of dimensionality. This effect is due to the fact that the current computational power is not enough to handle problems with such a high combination of variables. The challenge of forecasting prices depends on factors such as: (a) foresee the demand evolution (electric load); (b) the forecast of supply (reservoirs, hydrology and climate), capacity factor; and (c) the balance of the economy (pricing, auctions, foreign markets influence, economic policy, government budget and government policy). These factors are considered be used in the forecasting model for spot market prices and the results of its effectiveness are tested and huge presented.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-12082010-213202
Date22 December 2009
CreatorsRodrigues, Alcantaro Lemes
ContributorsGrimoni, Jose Aquiles Baesso
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguageEnglish
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0028 seconds