Return to search

Optimal Combination of Reduction Methods in Structural Mechanics and Selection of a Suitable Intermediate Dimension: Optimal Combination of Reduction Methods in Structural Mechanics and Selection of a Suitable Intermediate Dimension

A two-step model order reduction method is investigated in order to overcome problems of certain one-step methods. Not only optimal combinations of one-step reductions are considered but also the selection of a suitable intermediate dimension (ID) is described. Several automated selection methods are presented and their application tested on a gear box model. The implementation is realized using a Matlab-based Software MORPACK. Several recommendations are given towards the selection of a suitable ID, and problems in Model Order Reduction (MOR) combinations are pointed out. A pseudo two-step is suggested to reduce the full system without any modal information. A new node selection approach is proposed to enhance the SEREP approximation of the system’s response for small reduced representations.:Contents

Kurzfassung..........................................................................................iv
Abstract.................................................................................................iv
Nomenclature........................................................................................ix

1 Introduction........................................................................................1
1.1 Motivation........................................................................................1
1.2 Objectives........................................................................................1
1.3 Outline of the Thesis........................................................................2

2 Theoretical Background.......................................................................3
2.1 Finite Element Method......................................................................3
2.1.1 Modal Analysis...............................................................................4
2.1.2 Frequency Response Function.......................................................4

2.2 Model Order Reduction.....................................................................5

2.3 Physical Subspace Reduction Methods.............................................7
2.3.1 Guyan Reduction...........................................................................7
2.3.2 Improved Reduced System Method...............................................8

2.4 Modal Subspace Reduction Methods...............................................10
2.4.1 Modal Reduction...........................................................................11
2.4.2 Exact Modal Reduction..................................................................11
2.4.3 System Equivalent Reduction Expansion Process.........................13

2.5 Krylov Subspace Reduction Methods...............................................14

2.6 Hybrid Subspace Reduction Methods..............................................15
2.6.1 Component Mode Synthesis........................................................16
2.6.2 Hybrid Exact Modal Reduction......................................................19

2.7 Model Correlation Methods.............................................................21
2.7.1 Normalized Relative Frequency Difference...................................21
2.7.2 Modified Modal Assurance Criterion.............................................22
2.7.3 Pseudo-Orthogonality Check.......................................................22
2.7.4 Comparison of Frequency Response Function.............................23

3 Selection of Active Degrees of Freedom............................................25

3.1 Non-Iterative Methods...................................................................26
3.1.1 Modal Kinetic Energy and Variants..............................................26
3.1.2 Driving Point Residue and Variants..............................................27
3.1.3 Eigenvector Component Product..................................................28

3.2 Iterative Reduction Methods...........................................................29
3.2.1 Effective Independence Distribution.............................................29
3.2.2 Mass-Weighted Effective Independence.......................................32
3.2.3 Variance Based Selection Method.................................................33
3.2.4 Singular Value Decomposition Based Selection Method................34
3.2.5 Stiffness-to-Mass Ratio Selection Method.....................................34

3.3 Iterative Expansion Methods...........................................................35
3.3.1 Modal-Geometrical Selection Criterion...........................................36
3.3.2 Triaxial Effective Independence Expansion...................................36

3.4 Measure of Goodness for Selected Active Set..................................39
3.4.1 Determinant and Rank of the Fisher Information Matrix................39
3.4.2 Condition Number of the Partitioned Modal Matrix........................40
3.4.3 Measured Energy per Mode..........................................................40
3.4.4 Root Mean Square Error of Pseudo-Orthogonality Check.............41
3.4.5 Eigenvalue Comparison................................................................41

4 Two-Step Reduction in MORPACK.......................................................42

4.1 Structure of MORPACK.....................................................................42

4.2 Selection of an Intermediate Dimension.........................................43
4.2.1 Intermediate Dimension Requirements........................................44
4.2.2 Implemented Selection Methods..................................................45
4.2.3 Recommended Selection of an Intermediate Dimension...............48

4.3 Combination of Reduction Methods.................................................49
4.3.1 Overview of All Candidates..........................................................50
4.3.2 Combinations with Modal Information.........................................54
4.3.3 Combinations without Modal Information....................................54

5 Applications........................................................................................57
5.1 Gear Box Model...............................................................................57
5.2 Selection of Additional Active Nodes................................................58
5.3 Optimal Intermediate Dimension......................................................64
5.4 Two-Step Model Order Reduction Results........................................66
5.5 Comparison to One-Step Model Order Reduction Methods..............70
5.6 Comparison to One-Step Hybrid Model Order Reduction Methods...72
5.7 Proposal of a New Approach for Additional Node Selection..............73

6 Summary and Conclusions...................................................................77

7 Zusammenfassung und Ausblick..........................................................79

Bibliography............................................................................................81

List of Tables..........................................................................................86
List of Figures.........................................................................................88

A Appendix.............................................................................................89
A.1 Results of Two-Step Model Order Reduction.....................................89
A.2 Data CD............................................................................................96 / Mehrschrittverfahren der Modellreduktion werden untersucht, um spezielle Probleme konventioneller Einschrittverfahren zu lösen. Eine optimale Kombination von strukturmechanischen Reduktionsverfahren und die Auswahl einer geeigneten Zwischendimension wird untersucht. Dafür werden automatische Verfahren in Matlab implementiert, in die Software MORPACK integriert und anhand des Finite Elemente Modells eines Getriebegehäuses ausgewertet. Zur Auswahl der Zwischendimension werden Empfehlungen genannt und auf Probleme bei der Kombinationen bestimmter Reduktionsverfahren hingewiesen. Ein Pseudo- Zweischrittverfahren wird vorgestellt, welches eine Reduktion ohne Kenntnis der modalen Größen bei ähnlicher Genauigkeit im Vergleich zu modalen Unterraumverfahren durchführt. Für kleine Reduktionsdimensionen wird ein Knotenauswahlverfahren vorgeschlagen, um die Approximation des Frequenzganges durch die System Equivalent Reduction Expansion Process (SEREP)-Reduktion zu verbessern.:Contents

Kurzfassung..........................................................................................iv
Abstract.................................................................................................iv
Nomenclature........................................................................................ix

1 Introduction........................................................................................1
1.1 Motivation........................................................................................1
1.2 Objectives........................................................................................1
1.3 Outline of the Thesis........................................................................2

2 Theoretical Background.......................................................................3
2.1 Finite Element Method......................................................................3
2.1.1 Modal Analysis...............................................................................4
2.1.2 Frequency Response Function.......................................................4

2.2 Model Order Reduction.....................................................................5

2.3 Physical Subspace Reduction Methods.............................................7
2.3.1 Guyan Reduction...........................................................................7
2.3.2 Improved Reduced System Method...............................................8

2.4 Modal Subspace Reduction Methods...............................................10
2.4.1 Modal Reduction...........................................................................11
2.4.2 Exact Modal Reduction..................................................................11
2.4.3 System Equivalent Reduction Expansion Process.........................13

2.5 Krylov Subspace Reduction Methods...............................................14

2.6 Hybrid Subspace Reduction Methods..............................................15
2.6.1 Component Mode Synthesis........................................................16
2.6.2 Hybrid Exact Modal Reduction......................................................19

2.7 Model Correlation Methods.............................................................21
2.7.1 Normalized Relative Frequency Difference...................................21
2.7.2 Modified Modal Assurance Criterion.............................................22
2.7.3 Pseudo-Orthogonality Check.......................................................22
2.7.4 Comparison of Frequency Response Function.............................23

3 Selection of Active Degrees of Freedom............................................25

3.1 Non-Iterative Methods...................................................................26
3.1.1 Modal Kinetic Energy and Variants..............................................26
3.1.2 Driving Point Residue and Variants..............................................27
3.1.3 Eigenvector Component Product..................................................28

3.2 Iterative Reduction Methods...........................................................29
3.2.1 Effective Independence Distribution.............................................29
3.2.2 Mass-Weighted Effective Independence.......................................32
3.2.3 Variance Based Selection Method.................................................33
3.2.4 Singular Value Decomposition Based Selection Method................34
3.2.5 Stiffness-to-Mass Ratio Selection Method.....................................34

3.3 Iterative Expansion Methods...........................................................35
3.3.1 Modal-Geometrical Selection Criterion...........................................36
3.3.2 Triaxial Effective Independence Expansion...................................36

3.4 Measure of Goodness for Selected Active Set..................................39
3.4.1 Determinant and Rank of the Fisher Information Matrix................39
3.4.2 Condition Number of the Partitioned Modal Matrix........................40
3.4.3 Measured Energy per Mode..........................................................40
3.4.4 Root Mean Square Error of Pseudo-Orthogonality Check.............41
3.4.5 Eigenvalue Comparison................................................................41

4 Two-Step Reduction in MORPACK.......................................................42

4.1 Structure of MORPACK.....................................................................42

4.2 Selection of an Intermediate Dimension.........................................43
4.2.1 Intermediate Dimension Requirements........................................44
4.2.2 Implemented Selection Methods..................................................45
4.2.3 Recommended Selection of an Intermediate Dimension...............48

4.3 Combination of Reduction Methods.................................................49
4.3.1 Overview of All Candidates..........................................................50
4.3.2 Combinations with Modal Information.........................................54
4.3.3 Combinations without Modal Information....................................54

5 Applications........................................................................................57
5.1 Gear Box Model...............................................................................57
5.2 Selection of Additional Active Nodes................................................58
5.3 Optimal Intermediate Dimension......................................................64
5.4 Two-Step Model Order Reduction Results........................................66
5.5 Comparison to One-Step Model Order Reduction Methods..............70
5.6 Comparison to One-Step Hybrid Model Order Reduction Methods...72
5.7 Proposal of a New Approach for Additional Node Selection..............73

6 Summary and Conclusions...................................................................77

7 Zusammenfassung und Ausblick..........................................................79

Bibliography............................................................................................81

List of Tables..........................................................................................86
List of Figures.........................................................................................88

A Appendix.............................................................................................89
A.1 Results of Two-Step Model Order Reduction.....................................89
A.2 Data CD............................................................................................96

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:28236
Date08 May 2014
CreatorsPaulke, Jan
ContributorsLein, Claudius, Beitelschmidt, Michael, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:masterThesis, info:eu-repo/semantics/masterThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0033 seconds