La simulation des écoulements diphasiques rencontrés dans les moteurs à combustion interne (MCI) est de grande importance pour la prédiction de la performance des moteurs et des émissions polluantes. L’injection directe du carburant liquide à l’intérieur de la chambre de combustion génère loin de l’injecteur un brouillard de gouttes polydisperses, communément appelé spray. Du point de vue de la modélisation, l’émergence des méthodes Eulériennes pour la description du spray est considérée prometteuse par la communauté scientifique. De plus, la prise en compte de la distribution en taille des gouttes par les approches Eulériennes, de manière peu coûteuse en temps de calcul, n’est plus considérée comme un verrou depuis le développement de la méthode Eulerian Multi Size Moment (EMSM). Afin d’envisager la simulation de configurations réalistes de MCI, ce travail de thèse propose de modéliser les interactions turbulentes two-way entre le spray polydisperse évaporant et la phase gazeuse environnante par la méthode EMSM. Dans le contexte du formalisme Arbitrary Lagrangian Eulerian (ALE) dédiée au traitement du maillage mobile, les termes sources présents dans le modèle diphasique sont traités séparément des autres contributions. Le système d’équations est fermé à l’aide d’une technique de reconstruction par maximisation d’entropie (ME), originellement introduite pour EMSM. Une nouvelle stratégie de résolution a été développée pour garantir la stabilité numérique aux échelles de temps très rapides introduites par les transferts de masse, quantité de mouvement et énergie, tout en respectant la condition de réalisabilité associée à la préservation de l’espace des moments d’ordre ´élevé. A l’aide des simulations académiques, la stabilité et la précision de la méthode ont été étudiées aussi bien pour des lois d’évaporation constantes que dépendantes du temps. Tous ces développements ont été intégrés dans le code industriel IFP-C3D dédié aux écoulements compressibles et réactifs. Dans le contexte de la simulation en 2-D de l’injection directe, les résultats se sont avérés très encourageants comme en témoignent les comparaisons qualitatives et quantitatives de la méthode Eulerienne à la simulation Lagrangienne de référence des gouttes. De plus, les simulations en 3-D effectuées dans une configuration typique de chambre de combustion et des conditions d’injection réalistes ont donné lieu à des résultats qualitativement très satisfaisants. Afin de prendre en compte la modélisation de la turbulence, une extension moyennée, au sens de Reynolds, des équations du modèle diphasique two-way est dérivée, un soin particulier étant apporté aux fermetures des corrélations turbulentes. La répartition de l’énergie dans le spray ainsi que les interactions turbulentes entre les phases ont été étudiées dans des cas tests homogènes. Ces derniers donnent un aperçu intéressant sur la physique sous-jacente dans les MCI. Cette nouvelle approche RANS diphasique est maintenant prête à être employée pour les simulations d’application de MCI. / The ability to simulate two-phase flows is of crucial importance for the prediction of internal combustion engine (ICE) performance and pollutant emissions. The direct injection of the liquid fuel inside the combustion chamber generates a cloud of polydisperse droplets, called spray, far downstream of the injector. From the modeling point of view, the emergence of Eulerian techniques for the spray description is considered promising by the scientific community. Moreover, the bottleneck issue for Eulerian methods of capturing the droplet size distribution with a reasonable computational cost, has been successfully tackled through the development of Eulerian Multi Size Moment (EMSM) method. Towards realistic ICE applications, the present PhD work addresses the modeling of two-way turbulent interactions between the polydisperse spray and its surrounding gas-phase through EMSM method. Following to the moving mesh formalism ArbitraryLagrangian Eulerian (ALE), the source terms arising in the two-phase model have been treated separately from other contributions. The equation system is closed through the maximum entropy (ME) reconstruction technique originally introduced for EMSM. A new resolution strategy is developed in order to guarantee the numerical stability under veryfast time scales related to mass, momentum and energy transfers, while preserving the realizability condition associated to the set of high order moments. From the academic point of view, both the accuracy and the stability have been deeply investigated under both constant and time dependent evaporation laws. All these developments have beenintegrated in the industrial software IFP-C3D dedicated to compressible reactive flows. In the context of 2-D injection simulations, very encouraging quantitative and qualitative results have been obtained as compared to the reference Lagrangian simulation of droplets. Moreover, simulations conducted under a typical 3-D configuration of a combustion chamber and realistic injection conditions have given rise to fruitful achievements. Within the framework of industrial turbulence modeling, a Reynolds averaged (RA) extension of the two-way coupling equations is derived, providing appropriate closures for turbulent correlations. The correct energy partitions inside the spray and turbulent interactions between phases have been demonstrated through homogeneous test-cases. The latter cases gave also some significant insights on underlying physics in ICE. This new RA approach is now ready for ICE application simulations.
Identifer | oai:union.ndltd.org:theses.fr/2014ECAP0029 |
Date | 21 March 2014 |
Creators | Emre, Oguz |
Contributors | Châtenay-Malabry, Ecole centrale de Paris, Massot, Marc, Laurent, Frédérique |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.007 seconds