Distal radius fractures are one of the most common fractures. In case of a complicated fracture, it is necessary to proceed with surgical treatment using an internal plate fixator. The aim of this thesis was to perform a stress-strain analysis of an internal plate fixator attached to the distal radius using bone screws. Computational modeling using finite element method was used to assess the mechanical interactions among the individual elements of this system. The stress-strain analysis was performed for three different types of fixation in geometry models including a distal radius fracture and a healed distal radius and for three different types of loads. In the evaluation of the results, the influence of the type of load and the influence of the healing of the bone tissue were assessed. For the bending load, which was the most critical, the yield strength was not exceeded in the plate or in the bone screws, and therefore irreversible plastic deformation of the material did not occur.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:418203 |
Date | January 2020 |
Creators | Hussliková, Veronika |
Contributors | Hájek, Petr, Marcián, Petr |
Publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0019 seconds