Return to search

Tracking the invisible requires prediction and internal models

In order to grasp an object in their visual field, humans orient their visual axis to targets of interest. While scanning their environment, humans perform multiple saccades (rapid eye movements that correct for a position error between eye and target) to align their visual axis with objects of interest. Humans are also able to track objects that move in their environment by means of smooth pursuit eye movements (slow eye movements that correct for any velocity error between eye and target, i.e. for any retinal slip).
The appearance of a moving stimulus in the environment elicits smooth pursuit eye movements with a latency of around 100ms. Accordingly, the smooth pursuit system accounts for a change in the trajectory of a moving target with a similar delay. Due to this delay, the oculomotor system needs to develop strategies to avoid the build up of position error during tracking of a moving target. To do so, the oculomotor system uses prediction to try and anticipate the future target trajectory. However, this strategy is limited to conditions where target trajectory is predictable. Otherwise, primates have to combine pursuit and saccades in visual tracking of unpredictable moving targets to avoid large position error.
This thesis focuses on both the prediction mechanisms and the interactions between saccades and pursuit. In order to investigate prediction mechanisms, we asked human subjects to pursue a moving target when it was transiently occluded. During occlusions, subjects continued to pursue the invisible target. This thesis demonstrates that this predictive pursuit response is based on a dynamic internal representation of target motion, i.e. a representation that evolves with time. This internal representation could be either built up by repetition of the same target motion or extrapolated on the basis of the pre-occlusion target motion. In addition, it is shown that during occlusions, saccades are adjusted in order to account for the large variability of the smooth pursuit response. As a consequence, it shows that the smooth pursuit command is used by internal models in order to predict future smooth pursuit response. These results demonstrate that both prediction and internal models are necessary to track the invisible and the visible.

Identiferoai:union.ndltd.org:BICfB/oai:ucl.ac.be:ETDUCL:BelnUcetd-12122007-132126
Date14 December 2007
CreatorsOrban de Xivry, Jean-Jacques
PublisherUniversite catholique de Louvain
Source SetsBibliothèque interuniversitaire de la Communauté française de Belgique
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-12122007-132126/
Rightsmixed, J'accepte que le texte de la thèse (ci-après l'oeuvre), sous réserve des parties couvertes par la confidentialité, soit publié dans le recueil électronique des thèses UCL. A cette fin, je donne licence à l'UCL : - le droit de fixer et de reproduire l'oeuvre sur support électronique : logiciel ETD/db - le droit de communiquer l'oeuvre au public Cette licence, gratuite et non exclusive, est valable pour toute la durée de la propriété littéraire et artistique, y compris ses éventuelles prolongations, et pour le monde entier. Je conserve tous les autres droits pour la reproduction et la communication de la thèse, ainsi que le droit de l'utiliser dans de futurs travaux. Je certifie avoir obtenu, conformément à la législation sur le droit d'auteur et aux exigences du droit à l'image, toutes les autorisations nécessaires à la reproduction dans ma thèse d'images, de textes, et/ou de toute oeuvre protégés par le droit d'auteur, et avoir obtenu les autorisations nécessaires à leur communication à des tiers. Au cas où un tiers est titulaire d'un droit de propriété intellectuelle sur tout ou partie de ma thèse, je certifie avoir obtenu son autorisation écrite pour l'exercice des droits mentionnés ci-dessus.

Page generated in 0.0101 seconds