La gravité est omniprésente et affecte la dynamique de tous les mouvements que nous réalisons au quotidien. Variant de moins de 1% sur la surface terrestre, la force d’attraction gravitationnelle (9.81 m/s2) est actrice de l’évolution de toute espèce vivante. Grâce à un système sensoriel performant, les conséquences des effets de la gravité sur nos mouvements sont mémorisées sous la forme de représentations internes. Pour éviter d’être tributaires des délais temporels contraignants des signaux afférents du système sensoriel (trop longs si le mouvement doit être réalisé en urgence), l’individu agit de façon proactive en utilisant des modèles internes adaptés qu’il a notamment élaborés au cours de son expérience passée. Ces modèles sont utilisés essentiellement au cours d’une phase de planification motrice durant laquelle une commande motrice est définie pour initier l’action. La connaissance antérieure de notre système biomécanique et de notre environnement détermine donc l’ensemble des modèles internes de chaque individu. Cependant, à l’état initial, les retours sensoriels peuvent aussi être utilisés pour élaborer une stratégie motrice optimale. Pour anticiper au mieux les effets de la gravité, le rôle de ces informations initiales issues de feedback sensoriel reste encore à approfondir. C’est au cours de ces travaux de thèse que nous avons mis en évidence l’importance de ces informations avant l’exécution du mouvement. Une fois disponible (~100ms après le début du mouvement), les retours sensoriels disponibles sont alors intégrés aux modèles internes pour permettre un monitoring de la tâche motrice et éventuellement ajuster la stratégie au cours du mouvement. Ils sont d’autant plus utiles lorsque l’individu fait face à un nouveau contexte dynamique. En effet, l’individu va se fier davantage aux informations issues du système sensorimoteur, étant donné qu’il ne dispose d’aucun modèle interne adapté. C’est au cours d’une phase d’apprentissage que de nouveaux modèles internes vont être établis. Les facteurs qui permettent un apprentissage sont multivariés et dépendent du système sensoriel de chaque individu. Nous avons montré que lorsque tous les systèmes sensoriels subissent les effets d’un nouvel environnement gravito-inertiel, l’apprentissage était facilité. Ce résultat contraste avec le manque d’adaptation – voire les interférences – parfois observés lors d’apprentissages de tâches beaucoup plus simples. Tous ces mécanismes observables au niveau comportemental sont traités dans le cortex cérébral, et la prise en compte puis l’encodage des effets de la gravité sont effectués dans des aires cérébrales spécifiques. Si elles forment le réseau visuel vestibulaire lorsqu’il s’agit de prédire les effets de la gravité appliqués à des objets extérieurs, nous avons voulu savoir si le même réseau fonctionnel était responsable du traitement de la gravité lorsqu’il s’agissait de la production d’un mouvement. Nous avons mis en évidence que le cortex insulaire est le siège de ce réseau vestibulaire. Ainsi, grâce à une étude d’imagerie mentale qui n’induit pas de mouvement, nous avons également pu observer des différences de circuiterie au sein même de l’insula lorsque des informations gravitaires utiles fournies par les capteurs sensoriels, en particulier proprioceptifs, sont transmises (phase d’exécution), ou non (phase de planification du mouvement) au cerveau. / Gravity is immutable, ubiquitous and affects the dynamic of our daily movements. The gravitational attraction (9.81 m / s2) which varies less than 1% of the earth's surface, is an actress of the evolution of all living species. Thanks to an efficient sensorimotor system, the dynamical consequences of the effects of gravity on our movements are stored as internal representations. To circumvent the time delays of the afferent signals coming from the sensorimotor system (too long to plan quick movements), the Central Nervous System (CNS) acts in a proactive fashion by using suitable internal models developed during our past experiences. These models are mainly used during the motor planning to provide a motor command to initiate the action. Prior knowledge of our biomechanical system and our environment therefore characterizes the diversity of internal models of each individual. However, before movement’s execution, sensory feedback can also be used to develop an optimal strategy of the motor task. The role of this initial information coming from the sensory feedback to anticipate the effects of gravity remains to deepen. During this thesis, we have highlighted the critical role of the initial information to plan a movement. Once available (~ 100 ms after the beginning of the movement), the sensory feedback is then integrated into internal models to control the motor task and if it is necessary, to adjust the strategy during movement execution. The initial information is especially useful when we have to deal with a new dynamical context. Indeed, the CNS will much more rely on this information coming from the sensorimotor system, given that no internal model related to the unusual context has still been developed. During a learning phase new internal models will be established. The parameters which allow learning are various and depend on the sensorimotor system of each individual. We have shown that when all the sensory systems are affected by the effects of a new gravito-inertial environment, learning was facilitated. This result contrasts with the lack of adaptation - or interference - sometimes observed during learning tasks much easier. All these mechanisms observed at a behavioral stage are processed in the cerebral cortex, and the integration and encoding of the effects of gravity are processed in specific brain areas. In particular, concerning external objects, the vestibular network is engaged to predict the effects of gravity. Thus, we wanted to know if the same functional network was responsible of the processing of the dynamical constraints of gravity during movement’s execution. We have shown that the insular cortex, which is the core region of the visual vestibular system, plays an important role. Then, by using mental imagery paradigm that does not induce movement, we also observed differences in the circuitry within the insula when gravity-relevant signals related to movement’s execution are transmitted or not to the brain.
Identifer | oai:union.ndltd.org:theses.fr/2016DIJOS055 |
Date | 12 December 2016 |
Creators | Rousseau, Célia |
Contributors | Dijon, Pozzo, Thierry, White, Olivier |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French, English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds