Höganäs AB has a customer center where they perform their cutomers production processes usingtheir own metal powder, thereby gaining knowledge of how the powder behaves and how it can be improved. The powder is usually pressed, and then sintered in a sintering furnace where temperature and atmosphere composition gives the component its desired characteristics. Höganäs AB didn’t save the parameters from these process’s in a easily accessible way, some values were not saved at all. To increase understanding of these parameters impact on the produced detail they wanted these parameters collected and stored in the cloud. They also wanted solution ideas and concepts for implementation of weight measuring on both the in- and output side of the furnace. This project used Ulrich & Eppinger’s product development method, modified by performing continous testing parallell to the design process. The project was also separated into three parts worked on simultaneously. Computer architecture, physical casing and weight measuring. To compile and upload to the cloud a Raspberry Pi 3 B+, a micro processor, was used. It connected via WiFi to upload files to OneDrive. The measured values from the furnace were gathered from the furnace’s PLC via OPCUA and a gas measuring unit via serial communication. Because of the use of metal powder there was conductive dust in the air which could lead to leakage currents and short circuiting if it were to gather on the processor unit. Hence the dust had to be keptaway. The casing was therefore designed to be relatively airtight. The casing was made with 3D-printed PETG. The seal utilized PETG’s elasticity to elastically deform an elevated seal, and thereby sealing the casing, without having to produce more components than a bottom and a lid. The cable feedthrough used the cables elastic deformation to seal. A screen was implemented to start and stop logging processes, which was also sealed using an overlapping lip around it’s rim. The logging of the furnace parameters was split in two logs, a day-log and a job-log. The daylog took measurements continously over a day in long intervals, 30 minutes. At the end of the day a log was uploaded for that day, hence the name. The job-log had to be started manually via the screen and was used to take measurements with higher frequency during a production series. Log files of both types were uploaded to a OneDrive folder. The product was tested with a number of final tests, both for the casing and the software. The casing was tested primarily for the numerical requirements set in the requirements specification. While the software was tested over a longer period of time to ensure functionality.The final product was a sealed, robust, easily disassembled and cable strain relieved 3D-printed box with a 3.5 inch touchscreen and a connected keyboard. It collected the desired data and compiled it to log files readable by programs such as Microsoft Excel. The weight measuring concept produced was a self-made solution with load cells under the loading ramp. The weight is then measured automatically during the regular loading process without disrupting it. Two backup solutions were also put forward.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-176753 |
Date | January 2021 |
Creators | Nygårds, Erik, Oliw, Martin |
Publisher | Linköpings universitet, Maskinkonstruktion, Linköpings universitet, Maskinkonstruktion |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0029 seconds