ABSTRACT The morphological premalignant changes in prostate epithelium such as high grade prostatic intraepithelial neoplasia (HGPIN) precede invasive prostate cancer (PC) by several decades. The overall aim of this project was to identify patterns of gene expression in HGPIN and early PC which increase our understanding of the early biology of PC and identify genes and pathways that correlate with an aggressive phenotype. A comprehensive tissue cohort of premalignant prostate lesions was collected in a tissue microarray (TMA) platform that was utilised for high-throughput validation of target genes. Using this unique resource, the expression of the tumour suppressor gene PTEN was assessed using immunohistochemistry in an initial candidate gene approach based on mouse models implicating PTEN in carcinogenesis. No significant difference in expression of PTEN was detected in premalignant and benign epithelium. A transcript profiling approach was undertaken by integrating laser capture microdissection, linear RNA amplification and oligonucleotide microarrays to perform a screen of matched patient samples of normal, HGPIN and PC cells. The expression patterns of two genes encoding secreted proteins, neuropeptide Y (NPY) and macrophage inhibitory cytokine (MIC-1) were validated using immunohistochemistry on TMAs representing the progression model of early PC. Increased expression of these proteins in PC was confirmed to occur early in the disease process and altered expression of NPY and MIC-1 was associated with worse clinical outcome. Further analysis of global gene expression patterns using a structured network knowledge base identified a notable aberration in the expression of extracellular matrix and extracellular matrix associated proteins in HGPIN and provided novel evidence for the role of this class of molecules in the development of PC. In summary, contrary to current dogma based on work in animal models, altered PTEN expression is unlikely to represent an important event in the development of malignancy in the human prostate. In contrast, the expression patterns and prognostic value of NPY and MIC-1 in HGPIN support their further evaluation as biomarkers for the development and progression of PC. The aberrant expression of genes and networks of genes detected in HGPIN will assist in further identification of biological pathways which may be targeted in therapeutic strategies against the development and progression of PC.
Identifer | oai:union.ndltd.org:ADTP/274254 |
Date | January 2006 |
Creators | Rasiah, Krishan Kumar, St Vincent's, UNSW |
Publisher | Awarded by:University of New South Wales. St Vincent's |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Krishan Kumar Rasiah, http://unsworks.unsw.edu.au/copyright |
Page generated in 0.0024 seconds