Rupture of atherosclerotic plaque is closely related to plaque composition. Currently, plaque composition cannot be clinically characterized by any imaging modality. The objective of this dissertation is to use a recently developed imaging modality – ultrasound-guided intravascular photoacoustic (IVPA) imaging – to detect the distribution of two critical components in atherosclerotic plaques: lipid and phagocytically active macrophages. Under the guidance of intravascular ultrasound imaging, spectroscopic IVPA imaging is capable of detecting the spatially resolving optical absorption property inside a vessel wall. In this study, contrast in spectroscopic IVPA imaging was provided by either the endogenous optical property of lipid or optically absorbing contrast agent such as gold nanoparticles (Au NPs). Using a rabbit model of atherosclerosis, this dissertation demonstrated that ultrasound guided spectroscopic IVPA imaging could simultaneously image lipid deposits as well as macrophages labeled in vivo with Au NPs. Information of macrophage activity around lipid rich plaques may help to identify rupture-prone or vulnerable plaques. The results show that ultrasound guided IVPA imaging is promising for detecting plaque composition in vivo. Clinical use of ultrasound guided IVPA imaging may significantly improve the accuracy of diagnosis and lead to more effective treatments of atherosclerosis. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/ETD-UT-2011-05-3454 |
Date | 01 June 2011 |
Creators | Wang, Bo, 1981- |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Type | thesis |
Format | application/pdf |
Page generated in 0.0021 seconds