Return to search

Propriétés émergentes des systèmes pluricellulaires hétérogènes / Emerging properties of heterogeneous multicellular systems

Dans la première partie de cette thèse, nous étudierons l’impact de l’hétérogénéité tumorale sur les phénomènes d’invasion collective des cellules cancéreuses et de dissémination métastatique.L’hétérogénéité des populations cellulaires tumorales est observée dans la plupart des lésions cancéreuses solides. Cependant, son impact sur le phénomène de métastase – élément prépondérant dans l’établissement du pronostic vital du patient – demeure à ce jour mal compris. En utilisant un modèle numérique minimal de tumeur, nous avons cherché à déterminer quel était l’impact de l’hétérogénéité des propriétés mécaniques des cellules cancéreuses sur leur invasion dans les tissus sains entourant la tumeur. Nous nous sommes particulièrement intéressés aux différences de mobilité cellulaire au sein des diverses populations cellulaires composant une tumeur. Nos travaux établissent un lien de causalité entre l’hétérogénéité tumorale et la dissémination métastatique. De plus, ils permettent de reproduire un certain nombre de morphologie d’invasion cancéreuse telles que des protrusions pluricellulaires en forme de « doigts » ou d’agrégats. Nos expériences in silico démontrent que deux mécanismes complémentaires sont à l’œuvre au sein des tumeurs hétérogènes. Une faible proportion de cellules leaders, possédant une force mobile plus élevée, est capable d’initier et de diriger l’invasion cancéreuse, alors que les effets de mouvements collectifs au sein de la tumeur fournissent la coordination mécanique nécessaire à un phénomène d’invasion collectif continu. Ces résultats suggèrent que la dynamique d’invasion collective observée durant le processus de métastase est un phénomène universel. Celui-ci est propre aux populations de cellules aux propriétés mécaniques hétérogènes, et peut être décrit en se fondant sur un nombre limité d’hypothèses physiques, et ce malgré l’importante variabilité génétique et phénotypique qui caractérise les pathologies cancéreuses.Dans la seconde partie de cette thèse, nous continuerons à étudier l’impact de l’hétérogénéité des propriétés cellulaires, cette fois à l’échelle d’un organisme pluricellulaire et non pas seulement d’un tissu. Nous nous intéresserons au développement de l’amibe sociale Dictyostelium discoideum. Lorsque les amibes sont privées de nourriture, elles forment des agrégats pluricellulaires nommés slugs,dans lesquels les cellules initialement identiques se différencient et se ségrèguent en deux populations distinctes : les cellules prespores, à l’arrière, et les cellules prestalks, à l’avant. La formation de ce motif spatial est caractérisé par une homéostasie des proportions des types cellulaires, qui demeurent quasi constants malgré les variations importantes du nombre de cellules au sein des agrégats. Si différents modèles ont été proposés pour expliquer l’origine de ce phénomène, il demeurait nécessaire de mettre en place des expériences quantitatives afin de confirmer ou d’infirmer ces modèles. Dans ce but, nous avons développé et caractérisé une nouvelle souche cellulaire de Dictyostelium, AX2-PYR, utilisant des sondes fluorescentes génétiquement encodées permettant de distinguer les différents types cellulaires au sein des slugs. Nos résultats démontrent l’invariance du motif prespore/prestalk avec la taille des slugs sur quatre ordres de grandeur, et mettent en évidence l’existence d’un mécanisme actif de régulation des proportions reposant sur les communications intercellulaires. / In the first part of this thesis, we study the impact of tumour heterogeneity on cancer collective invasion and metastatic dissemination. Heterogeneity within tumour cell populations is commonly observed in most solid tumours, but its impact on metastasis, one of the primary determinants of the disease prognosis, remains poorly understood.Working with a simplified numerical model of tumour spheroids, weinvestigate the impact of mechanical heterogeneity of tumour cells on the onset of tumour invasion into surrounding tissues, focusing more particularly on the influence of differences in cell motility. Ourwork establishes a positive link between tumour heterogeneity and metastatic dissemination, and recapitulates a number of invasion patterns identified in vivo, such as multicellular finger-like protrusionsor tumour cell clusters. In our in silico experiments, we demonstrate that two complementary mechanisms are at play in heterogeneous tumours: a small proportion of stronger cells with a higher motile force are able to initiate and lead the escape from the tumour, while collective effects in the bulk of the tumour provide the coordination required to sustain the invasive process through multicellular streaming. This suggests that the multicellular dynamics observed during metastasis is a generic feature of mechanically heterogeneous cell populations and might rely on a limited and generic set of physical assumptions shared by most tumours in spite of the genetic and phenotypic variability amongst patients and pathologies.In the second part of our work, we continue to explore the impact of heterogeneity on population scale behaviours of multicellular systems, focusing on the development of the social amoeba Dictyosteliumdiscoideum. Under starvation Dictyostelium cells form multicellular aggregates named slugs where amoeba cells differentiate and segregate into two distinct spatial zones, the prespore (rear) and prestalk (front) cells regions. This developmental pattern is characterized by an homeostasis of cell-type proportions with respect to slug size and external perturbations. Different models have been proposed to explain theorigin and regulation of this pattern, but quantitative experiments were still needed to decipher between the proposed mechanisms. To quantitatively investigate cell differentiation and spatial patterning in live multicellular aggregates, we developed and characterized a new stable cell line, AX2-PYR, using genetically encoded fluorescent reporters of cell differentiation into prespore and prestalk cells. Our results demonstrate the scaling of the prespore/prestalk pattern over more than three orders of magnitude in slug size, and show the existence of a proportion regulation mechanism which might rely on cell-cell communications.

Identiferoai:union.ndltd.org:theses.fr/2017USPCC023
Date08 September 2017
CreatorsHallou, Adrien
ContributorsSorbonne Paris Cité, Di Meglio, Jean-Marc, Kabla, Alexandre
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image

Page generated in 0.0029 seconds