Return to search

Invasive Hosts and their Context Dependent Relationships with Native Symbionts

Symbiotic relationships display plasticity through time, depending on a variety of factors that include host properties, symbiont densities, and environmental conditions. Invasive species can affect symbiotic relationships by introducing invasive symbionts, reducing the population of native symbionts, or competing for native symbionts as a resource. There is an established symbiotic relationship between crayfish and annelid worms in the order Branchiobdellida. Branchiobdellidan worms can have a mutualistic cleaning symbiosis with crayfish, or at times become parasitic and feed on crayfish gill tissue if nutrients on the host are low. With the introduction of invasive crayfish in the Southern Appalachians in Virginia, branchiobdellidan worm populations have sharply declined due to invasive crayfish being less competent hosts for the symbionts. However, degree of competency as a host may differ among invasive species to, as invasive hosts have their own unique context-dependent symbiotic relationships. To investigate how symbiotic relationships differ between invasive hosts, I encouraged symbiotic relationships between invasive hosts Faxonius virilis and Faxonius cristavarius and native symbionts Cambarincola ingens. In two experiments spanning several months, I observed changes in growth rates of hosts and damage to gill tissues over varying levels of symbiont exposure. One species of invasive host, F. cristavarius, had increased growth rates when exposed to native symbionts at low symbiont densities, while for the other invasive host, F. virilis, growth rates and gill chamber damage was not impacted by the presence of symbionts. I also compared an invasive host F. cristavarius to a native host Cambarus appalachiensis to measure the response of growth rate, symbiont damage to gills, and behavior of worms across a gradient of symbiont exposure. The native host's growth rates increased over time, but not due to an effect of symbionts. However, the invasive host exhibited effects from parasitism when symbiont densities were high. My findings suggest that invasive hosts can have their own unique context-dependent relationship with native symbionts. Because there is no one-size-fits-all rule for invasive hosts, when invasive hosts enter a region, new symbiotic relationships can be formed that are beneficial for invasive hosts and native symbionts. Invasive hosts or native symbionts could also be rejected by the other which may lead to decreases in either of their populations. / Master of Science / Symbiotic relationships are relationships between two or more organisms lasting for long periods of time and are often associated with proximity or touch. In symbiotic relationships there can be a host and a symbiote. The difference between the host and symbiont can be found in their roles such as protection from predators or parasites or by providing nutrients or transportation and the difference in size with the host being larger. Symbiotic relationships are not static and can change over time due to a variety of reasons, such as host size, symbiont abundance, or nutrient availability. The introduction of harmful non-native species, otherwise known as invasive species, can disrupt symbiotic relationships across ecosystems. Invasive species can introduce non-native symbionts, and also can become potential hosts for native symbionts. The relationship between crayfish and Branchiobdellidan worms, an order of small, segmented worms, has been established over decades of research as a useful system for studying symbiosis. Branchiobdellidan worms can provide a beneficial cleaning service by removing harmful symbionts or bacteria from their crayfish host. Alternatively, they can become parasites and feed on crayfish gills if nutrients are not available on the host. Introduced invasive crayfish can decrease the population of brachiobdellidan worms within the Southern Appalachians in Virginia. However, an established relationship between native symbionts and invasive crayfish hosts has not been studied. To investigate the effects of a symbiotic relationship over the time span of several months between invasive hosts and native symbionts, I experimentally reduced the ability of invasive hosts to remove branchiobdellidan symbionts to allow native branchiobdellidan worms time to acclimate on to invasive crayfish and establish a symbiotic relationship. In two experiments over several months, I recorded changes in host growth rates and gill damage. Invasive hosts had an increased growth rate when there was a low abundance of worms. I also compared an invasive host to a native host to see how changes in growth rates, gill chamber damage, and locations of worms on their host may differ. The native host's growth rates increased, but the invasive host had a negative growth rate when worm densities were too high. My findings suggest invasive hosts can have their own unique symbiotic relationship with native symbionts. When invasive hosts are introduced to a region, native symbiont populations may either decrease or native symbionts may find compatible invasive hosts. By examining relationships between native symbionts and invasive hosts, we can understand how invasions may influence symbiotic relationships and how other organisms are affected in the ecosystem.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/119397
Date11 June 2024
CreatorsLockett, Cameron St. John
ContributorsBiological Sciences, Brown, Bryan Lyle, Mims, Meryl C., Belden, Lisa Kay
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0575 seconds