Return to search

Análise inversa aplicada no dimensionamento de iluminação artificial em ambientes

No desenvolvimento de projetos de iluminação de ambientes, um dos objetivos que se destaca é a busca pelo conforto visual, que emprega metodologias de resolução conhecidas, como o Método dos Lumens e o Método Ponto a Ponto. A luz visível está contida no espectro da radiação térmica e, portanto, o fluxo luminoso pode ser relacionado ao fluxo de radiação térmica. Determinar as posições e as competências das fontes de luz necessárias na superfície de projeto ganha importância quando o comportamento, em termos de uniformidade ou de fluxo radiante, é especificado. O presente trabalho visa a estabelecer diferentes valores de fluxo em duas regiões distintas da superfície do projeto. Por meio do posicionamento das fontes de luz, é estabelecido um fluxo maior na região denominada principal e um fluxo menor na região denominada secundária. A modelagem matemática da radiação térmica (Método das Radiosidades) é aplicada ao projeto de iluminação, considerando-se as características da visão humana e o comportamento das fontes de luz. Na modelagem, é considerada uma cavidade retangular tridimensional com superfícies cinza e com condição de parede fria, na qual o poder emissivo das paredes é nulo. As fontes de luz são representadas por unidades de malha no teto. A relação de equações é resolvida por metodologia inversa, usando o algoritmo de Otimização Extrema Generalizada (GEO). Este algoritmo é classificado como um método de otimização estocástica de busca global para a resolução de sistemas considerados inicialmente mal condicionados. A posição e a potência das fontes luminosas são determinadas pela resolução do sistema de equações, de forma a proporcionar um fluxo de radiação duas vezes maior na região principal em relação à região secundária. A função objetivo do processo consiste em minimizar a diferença entre o fluxo desejado e os valores de fluxo de radiação incidente nas duas regiões da superfície de projeto. Em virtude das características de simetria do problema, a relação é estabelecida para apenas um quarto da cavidade. Assim, por exemplo, aplicar a metodologia com 9 fontes de luz a um quarto da região resulta em 36 fontes de luz em toda a cavidade. Os resultados mostram que é possível encontrar um arranjo de fontes de luz preestabelecendo-se duas condições de potência. / In the development of environmental illumination projects, one of the main goals to be achieved is the visual comfort, which is usually done by known methodologies, like the Lumens Method and the Point by Point Method. Since the visible light is contained in the spectrum of thermal radiation, the luminous flux can be related to the thermal radiation flux. The determination of the position and power of the light sources required by the design surface gains an higher importance whenever a behavior is specified, should it be in terms of uniformity or in therms of radiant flux. In this work, we describe a method that allows the establishment of different flux values in two distinct regions of the design surface, which are referred by the names main region and secondary region. Through the spatial arrangement of the light sources, the method sets a more intense flux in the main region and a less intense one in the secondary region. The mathematical model of thermal radiation, known as Radiosity Method, is applied to the illumination design, along with the characteristics of the human vision and the behavior of light sources. In this model, a rectangular three-dimensional cavity is considered. It has gray surfaces and exhibits the conditions of a cold wall, in which the emissivity power of the walls is null. The light sources are represented by a mesh unit in the ceiling. The system of equations is solved by inversemethodology, using the Generalized Extremal Optimization (GEO) algorithm. This algoritm is classified as being a stochastic optimization method of global search to solve systems that are initially considered ill-conditioned. By solving this system, the position and power of light sources can be determined, and this is done in such a way that the flux radiation in the main region is twice more intense then the one in the secondary region. The target function of the whole process is to minimize the difference between the desired flux and the incident flux radiation values for each one of the two design surface regions. We further explore the problem symmetry, solving the equation system for only a quarter of the cavity. This way, if the methodology is applied with nine light sources into a quarter of the region, the entire cavity will behave as if it has 36 light sources. Our results show that, given two prescribed conditions of power, it is possible to find an arrangement of light sources.

Identiferoai:union.ndltd.org:IBICT/oai:lume.ufrgs.br:10183/27256
Date January 2010
CreatorsSantos, Alexandro da Silva
ContributorsSchneider, Paulo Smith, França, Francis Henrique Ramos
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0017 seconds