Return to search

Least-squares Finite Element Solution Of Euler Equations With Adaptive Mesh Refinement

Least-squares finite element method (LSFEM) is employed to simulate 2-D and axisymmetric flows governed by the compressible Euler equations. Least-squares formulation brings many advantages over classical Galerkin finite element methods. For non-self-adjoint systems, LSFEM result in symmetric positive-definite matrices which can be solved efficiently by iterative methods. Additionally, with a unified formulation it can work in all flight regimes from subsonic to supersonic. Another advantage is that, the method does not require artificial viscosity since it is naturally diffusive which also appears as a difficulty for sharply resolving high gradients in the flow field such as shock waves. This problem is dealt by employing adaptive mesh refinement (AMR) on triangular meshes. LSFEM with AMR technique is numerically tested with various flow problems and good agreement with the available data in literature is seen.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12614138/index.pdf
Date01 February 2012
CreatorsAkargun, Yigit Hayri
ContributorsSert, Cuneyt
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.002 seconds