Return to search

Spin and charge properties of Si: P probed using ion-implanted nanostructures

This thesis investigates the defects, charge states and spin properties of phosphorus doped silicon, and is motivated by a number of proposals for quantum information processing (QIP) that involve using the spin or charge of individual donors in silicon as qubits. The implantation of phosphorus into silicon is investigated; specifically the ability to remove damage and activate the implanted donors. The impact of implantation on the transport properties of silicon MOSFETs at cryogenic temperatures is used to investigate the damage. Implanting phosphorus into the MOSFET channel leads to reduced electron mobility. The defect density increases linearly with implant density (??ndefect = 0.08 ?? 0.01nimplant). Silicon implantation does not show this effect, suggesting that the additional defects are ionised P donors in the channel. Implant activation for low density donors was complete for an implant density of 2 x 1012 cm2. Similar studies were undertaken on devices with a variety of dielectrics. Thermally grown SiO2 was found to have the lowest defect density of those studied, although Al2O3 deposited via atomic layer deposition was found to have properties that may be useful for the fabrication of devices with low thermal processing budgets. The as-grown defect density of the thermal silicon dioxide was found to be 2.1 ?? 0.3 x 1011 cm2. Ion implantation of nanoscale devices allowed the spin properties of a small number of phosphorus donors in silicon to be probed via electrically detected magnetic resonance. This allowed the detection of the spin resonance of as few as 100 spins. This represents an improvement in number detection of 4 orders of magnitude over previous EDMR studies of donors in silicon. EDMR was used to investigate the properties of P donors in isotopically purified 28Si . The material had a background doping level too high to detect small numbers of spins, however, the narrow linewidth of the phosphorus resonance confirm that the isotopic purity is greater than 0.999. A proof-of-principle demonstration of pulsed EDMR of ion-implanted donors in silicon is presented. The spin dependent transient that results from manipulating the donor spins via pulsed ESR is sensitive to as few as 104 donors, and is a required component for observation of spin Rabi oscillations by this technique.

Identiferoai:union.ndltd.org:ADTP/257591
Date January 2007
CreatorsMcCamey, Dane Robert, Physics, Faculty of Science, UNSW
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://unsworks.unsw.edu.au/copyright, http://unsworks.unsw.edu.au/copyright

Page generated in 0.0019 seconds