The goal of this project is the development of artificial ion channels that can be actuated by light and thus controlled efficiently. Our artificial system is composed of two regions: the gate and the body part. The gate part is based on light-responsive azo groups while the body part is formed by calix[4]resorcinarene. Key of controlling mechanism is the conformational change between cis and trans isomers, which is translated into movement of the gate. Light-gated artificial ion channels are aimed at eliminating of the stochastic mechanism of artificial ion channels. Such a reversible photocontrol should be a powerful tool for using artificial ion channels as the basis for the development of new pharmaceuticals and drug delivery systems, as photoswitches, and in the field of microfluidics.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:23931 |
Date | 18 December 2006 |
Creators | Steller, Laura Florentina |
Contributors | Salzer, Reiner, Habicher, Wolf Dieter, Rissanen, Kari |
Publisher | Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds