Concerns over industrial emissions and nuclear waste have led to the need to study ways to sequester industrial gasses, and recycle nuclear fuel. Two projects were done to study solvent systems for these two problems using computational methods. Current methods for SO₂ sequestration are wasteful in that the gasses cannot be extracted from the solvent, and the solvent cannot be reused. One possible solution, which this work focuses on, is the use of an ionic liquid as a sequestration agent for the adsorption of SO₂. Separation technology for heavy elements has not changed for over 60 years and issues with radiation contamination and low efficiency lead to high solvent waste. Biphasic alkane-water extraction systems are a possible solution as they have been used for the extraction of heavy elements. This work focuses on characterizing the factors that control partitioning in biphasic systems which increase extraction efficiency.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/255153 |
Date | January 2012 |
Creators | Gibbs, Jennifer |
Contributors | Corrales, Rene, Brown, Michael, Florence, Tama |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | text, Electronic Thesis |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0018 seconds