Embryonic stem cells (ESCs) are pluripotent cells derived from the early embryo and are able to differentiate into cells belonging to the three germ layers. They are a valuable tool in research and for clinical use, but their applications are limited by ethical and technical issues. In 2006 a breakthrough report described the generation of induced pluripotent stem cells (iPSCs). IPSCs are ESC-like cells generated from somatic cells by forcing the ectopic expression of specific transcription factors. This circumvents the ethical issues about the use of embryos in research and provides multiple opportunities to understand the mechanisms behind pluripotency. The aim of this project was to generate sheep iPSCs and characterise them. In order to learn the technique I initially repeated the original iPSC methodology: the putative mouse iPSCs I have generated display a morphology typical of ESCs, characterised by a high nuclear to cytoplasmic ratio, and form colonies with neat edges and smooth domes. These cells are positive to Nanog, a marker of pluripotency, and can give rise to cells belonging to the mesodermal and the ectodermal lineages when differentiated in vitro. Since the main aim of the thesis was the derivation of sheep pluripotent cells, once established the protocol in mouse, I then moved to the generation of ovine iPSC colonies. The cells I have generated have a morphology similar to that of mouse ESCs, express markers of pluripotency such as alkaline phosphatase and Nanog and can differentiate in vitro and in vivo into cells belonging to the three germ layers. Additionally, these ovine iPSCs can contribute to live born chimeric lambs, although at low level.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:563900 |
Date | January 2012 |
Creators | Sartori, Chiara |
Contributors | Whitelaw, Bruce |
Publisher | University of Edinburgh |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/1842/6491 |
Page generated in 0.0018 seconds