The present work describes the design and synthesis of a series of dimers [(η5 - ring)MCl]2(μ2 -Cl)2, (where (η5 -ring)MCl = (η5 -Me4C5R)Rh(III)Cl or (η5 -Me4C5R)Ir(III)Cl). Iridium and rhodium dimeric complexes were synthesized via a microwave reaction and directly compared through single-crystal X-ray crystallography. Finally, the dimeric complexes were evaluated as potential oxidation catalysts.
The modified HCp*R (R = isopropyl, n-butyl, isobutyl, sec-butyl, n-pentyl, n-hexyl, nheptyl, n-octyl, phenyl, benzyl, phenethyl, cyclohexyl, and cyclopentyl) type ligands were synthesized by reaction of 2,3,4,5-tetramethylcyclopent-2-en-1-one with the respective Grignard reagent (RMgX), followed by elimination of water under acidic conditions to produce the tetramethyl(alkyl or aryl)cyclopentadienes in moderate to excellent yields (39 - 98%). Reaction of the HCp*R ligands with [M(COD)](μ2 -Cl)2 (M = Rh, Ir; COD = 1,5-cyclooctadiene) gave the dimeric complexes [Cp*RMCl]2(μ2 -Cl)2 in yields ranging from 16 - 96%. The dimers were characterized by nuclear magnetic resonance (NMR)spectroscopy, single-crystal X-ray diffraction (XRD) (supplemented by powder XRD), high-resolution mass spectrometry (HRMS), and elemental analysis. Complexes studied by XRD were analyzed to understand the bond lengths and bond angles throughout each complex. The dimeric complexes synthesized, will facilitate a complete study on how the R group influences catalytic activity. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/71373 |
Date | 16 June 2016 |
Creators | Brown, Loren |
Contributors | Chemistry, Merola, Joseph S., Morris, John R., Yee, Gordon T. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0021 seconds