Return to search

A Hybrid Multibiometric System for Personal Identification Based on Face and Iris Traits. The Development of an automated computer system for the identification of humans by integrating facial and iris features using Localization, Feature Extraction, Handcrafted and Deep learning Techniques.

Multimodal biometric systems have been widely applied in many real-world applications due to its ability to deal with a number of significant limitations of unimodal biometric systems, including sensitivity to noise, population coverage, intra-class variability, non-universality, and vulnerability to spoofing. This PhD thesis is focused on the combination of both the face and the left and right irises, in a unified hybrid multimodal biometric identification system using different fusion approaches at the score and rank level.
Firstly, the facial features are extracted using a novel multimodal local feature extraction approach, termed as the Curvelet-Fractal approach, which based on merging the advantages of the Curvelet transform with Fractal dimension. Secondly, a novel framework based on merging the advantages of the local handcrafted feature descriptors with the deep learning approaches is proposed, Multimodal Deep Face Recognition (MDFR) framework, to address the face recognition problem in unconstrained conditions. Thirdly, an efficient deep learning system is employed, termed as IrisConvNet, whose architecture is based on a combination of Convolutional Neural Network (CNN) and Softmax classifier to extract discriminative features from an iris image.
Finally, The performance of the unimodal and multimodal systems has been evaluated by conducting a number of extensive experiments on large-scale unimodal databases: FERET, CAS-PEAL-R1, LFW, CASIA-Iris-V1, CASIA-Iris-V3 Interval, MMU1 and IITD and MMU1, and SDUMLA-HMT multimodal dataset. The results obtained have demonstrated the superiority of the proposed systems compared to the previous works by achieving new state-of-the-art recognition rates on all the employed datasets with less time required to recognize the person’s identity.Multimodal biometric systems have been widely applied in many real-world applications due to its ability to deal with a number of significant limitations of unimodal biometric systems, including sensitivity to noise, population coverage, intra-class variability, non-universality, and vulnerability to spoofing. This PhD thesis is focused on the combination of both the face and the left and right irises, in a unified hybrid multimodal biometric identification system using different fusion approaches at the score and rank level.
Firstly, the facial features are extracted using a novel multimodal local feature extraction approach, termed as the Curvelet-Fractal approach, which based on merging the advantages of the Curvelet transform with Fractal dimension. Secondly, a novel framework based on merging the advantages of the local handcrafted feature descriptors with the deep learning approaches is proposed, Multimodal Deep Face Recognition (MDFR) framework, to address the face recognition problem in unconstrained conditions. Thirdly, an efficient deep learning system is employed, termed as IrisConvNet, whose architecture is based on a combination of Convolutional Neural Network (CNN) and Softmax classifier to extract discriminative features from an iris image.
Finally, The performance of the unimodal and multimodal systems has been evaluated by conducting a number of extensive experiments on large-scale unimodal databases: FERET, CAS-PEAL-R1, LFW, CASIA-Iris-V1, CASIA-Iris-V3 Interval, MMU1 and IITD and MMU1, and SDUMLA-HMT multimodal dataset. The results obtained have demonstrated the superiority of the proposed systems compared to the previous works by achieving new state-of-the-art recognition rates on all the employed datasets with less time required to recognize the person’s identity. / Higher Committee for Education Development in Iraq

Identiferoai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/16917
Date January 2018
CreatorsNassar, Alaa S.N.
ContributorsQahwaji, Rami S.R., Ipson, Stanley S.
PublisherUniversity of Bradford, School of Electrical Engineering and Computer Science
Source SetsBradford Scholars
LanguageEnglish
Detected LanguageEnglish
TypeThesis, doctoral, PhD
Rights<a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/"><img alt="Creative Commons License" style="border-width:0" src="http://i.creativecommons.org/l/by-nc-nd/3.0/88x31.png" /></a><br />The University of Bradford theses are licenced under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/">Creative Commons Licence</a>.

Page generated in 0.0022 seconds