Thesis (S.M.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2006. / Includes bibliographical references (p. 81-86). / The impact of the Greenland tip jet on the wintertime mixed-layer of the southwest Irminger Sea is investigated using in-situ moored profiler data and a variety of atmospheric data sets. The mixed-layer was observed to reach 400 m in the spring of 2003, and 300 m in the spring of 2004. Both of these winters were mild and characterized by a low North Atlantic Oscillation (NAO) index. All of the storms that were advected through the region were tracked, and the tip jet events that occurred throughout the two winters were identified. Composite images of the tip jets elucidated the conditions during which tip jets were likely to take place, which led to an objective method of determining tip jet occurrences by taking into account the large-scale pressure gradients. Output from a trajectory model indicates that the air parcels entering a tip jet accelerate and descend as they are deflected around southern Greenland. A heat flux timeseries for the mooring site was constructed that includes the enhancing influence of the tip jet events. This was used to drive a one-dimensional mixed-layer model, which was able to reproduce the observed mixed-layer deepening in both winters. All of the highest heat flux events took place during tip jets, and removal of the tip jets from the heat flux timeseries demonstrated their importance in driving convection east of Greenland. / (cont.) The deeper mixed-layer of the first winter was in large part due to a higher number of robust tip jet events, which in turn was caused by a greater number of storms passing northeast of southern Greenland. This interannual change in storm tracks was attributable to a difference in upper level steering currents. Application of the mixed-layer model to the winter of 1994-1995, during a period characterized by a high NAO index, resulted in convection reaching 1600 m. This prediction is consistent with concurrent hydrographic data, supporting the notion that deep convection can occur in the Irminger Sea during strong winters. / by Kjetil Våge. / S.M.
Identifer | oai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/39202 |
Date | January 2006 |
Creators | Våge, Kjetil |
Contributors | Robert S. Pickart., Woods Hole Oceanographic Institution., Joint Program in Physical Oceanography, Woods Hole Oceanographic Institution, Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences |
Publisher | Massachusetts Institute of Technology |
Source Sets | M.I.T. Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Thesis |
Format | 86 p., application/pdf |
Coverage | ln----- n-gl--- |
Rights | M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582 |
Page generated in 0.0023 seconds