Return to search

Pathways to sustainable catalysis : from novel catalysts to mechanistic understanding

Catalysis allows for the controlled formation of new bonds, whilst reducing both time and energy expenditure in the process. Catalysis has traditionally been the realm of precious metals, which have been used to carry out a bewildering array of reactions. However, there is an ever-increasing drive for the development of catalytic methodology employing sustainable and environmentally benign catalysts. Two such candidates are organocatalysis, omitting the need for metals where possible, or the use of iron catalysis. Two key areas to the advancement of the of field catalysis are the identification and development of new catalysts as well as an understanding of the mechanisms of established catalytic processes. Novel catalysts can provide many benefits such as enhanced or even novel reactivity, access to new classes of substrates or simply be more readily accessible compared with previously developed catalysts. To this end, the first example of Lewis-base-catalysis using the recently developed cyclopropenimine motif is reported. This was exploited in the trifluoromethylation of aldehydes and ketones using the Rupert-Prakash reagent (Scheme A-1). Scheme A-1 Cyclopropenimine-catalysed trifluoromethylation of aldehydes and ketones Developing an understanding of catalytic methodologies in the terms of their mechanism and active species is also a key area in catalysis. Insight into these can direct the expansion of these systems in terms of both more effective catalysts and tailoring reaction conditions as examples. The iron-catalysed hydromagnesiation of styrene derivatives was studied in detail. This culminated in a proposed mechanism, involving a novel hydride transfer process (Scheme A-2). Studies were carried out using a combination of kinetic analysis and in situ Mössbauer spectroscopy, as well as successfully isolating and studying the reactivity of a catalytically-relevant, formal iron(0)-species.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:726608
Date January 2017
CreatorsNeate, Peter Gregory Nigel
ContributorsThomas, Stephen ; Cowley, Michael
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/25441

Page generated in 0.0017 seconds