In this thesis, the implementation and results of studies into the effect of pH on the kinetics of various iron transformations in natural waters are described. Specific studies include i) the oxidation of Fe(II) in the absence and presence of both model and natural organic ligands, ii) the complexation of Fe(III) by model organic compounds, and iii) the precipitation of Fe(III) through the use of both laboratory investigations of iron species and kinetic modeling. In the absence of organic ligands, oxidation of nanomolar concentrations of Fe(II) over the pH range 6.0 -- 8.0 is predominantly controlled by the reaction of Fe(II) with oxygen and with superoxide while the disproportionation of superoxide appears to be negligible. Oxidation of Fe(II) by hydrogen peroxide, back reduction of Fe(III) by superoxide and precipitation of Fe(III) have been shown to exert some influences at various stages of the oxidation at different pH and initial Fe(II) concentrations. In the presence of organic ligands, different effects on the Fe(II) oxidation kinetics is shown with different organic ligands, their initial concentrations and with varying pH. A detailed kinetic model is developed and shown to adequately describe the kinetics of Fe(II) oxidation in the absence and presence of various ligands over a range of concentrations and pH. The applicability of the previous oxidation models to describe the experimental data is assessed. Rate constants for formation of Fe(III) by a range of model organic compounds over the pH range 6.0 -- 9.5 are determined. Variation of rate constants for Fe(III) complexation by desferrioxamine B and ethylenediaminetetraacetate with varying pH is explained by an outer-sphere complexation model. The significant variation in rate constants of Fe(III) complexation by salicylate, 5-sulfosalicylate, citrate and 3,4-dihydroxylbenzoate with varying pH is possibly due to the presence of different complexes at different pH. The results of this study demonstrate that organic ligands from different sources may influence the speciation of iron in vastly different ways. The kinetics of Fe(III) precipitation are investigated in bicarbonate solutions over the pH range 6.0 -- 9.5. The rate of precipitation varies by nearly two orders of magnitude with a maximum rate constant at a pH of around 8.0. The results of the study support the existence of the dissolved neutral species Fe(OH)30 and suggests that it is the dominant precursor in Fe(III) polymerization and subsequent precipitation at circumneutral pH. Variation in the precipitation rate constant over the pH range considered is consistent with a mechanism in which the kinetics of iron precipitation are controlled by rates of water exchange in dissolved iron hydrolysis species.
Identifer | oai:union.ndltd.org:ADTP/187289 |
Date | January 2007 |
Creators | Pham, An Ninh, Civil & Environmental Engineering, Faculty of Engineering, UNSW |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | http://unsworks.unsw.edu.au/copyright, http://unsworks.unsw.edu.au/copyright |
Page generated in 0.0018 seconds