Return to search

NMR STUDY OF THE POTASSIUM IRON SELENIDE HIGH-TEMPERATURE SUPERCONDUCTOR

<p>In this thesis we present a <sup>77</sup>Se NMR study of the iron selenide based high-temperature superconductor K<sub>x</sub>Fe<sub>2−y</sub>Se<sub>2</sub> (T<sub>c</sub> = 33 K). We observe NMR lineshapes as narrow as ∼ 4.5 kHz with an applied field along the crystal c-axis, and find no evidence for the co-existence of magnetic order with superconductivity. With an applied field along the ab plane, however, the lineshape splits into two peaks of equal intensities at all temperatures, suggesting that the tetragonal fourfold symmetry of the average structure may be locally lowered by vacancy superstructure. Knight shift data indicate that spin susceptibility decreases progressively with temperature, similar to other iron arsenide high-T<sub>c</sub> systems. In the nuclear spin-lattice relaxation rate 1/T<sub>1</sub> we observe no Hebel-Slichter coherence peak, nor any enhancement in low frequency antiferromagnetic spin fluctuations in 1/T<sub>1</sub>T. We also report on the effects of sulphur (S) substitution on the selenium sites in this system by conducting <sup>77</sup>Se NMR measurements on K<sub>x</sub>Fe<sub>2−y</sub>Se<sub>2−z</sub>S<sub>z</sub> (z = 0.8, 1.6). We find that both spin susceptibility and low frequency spin fluctuations are suppressed with increasing S content along with T<sub>c</sub>.</p> / Master of Science (MSc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/12593
Date10 1900
CreatorsTorchetti, David
ContributorsImai, Takashi, Physics and Astronomy
Source SetsMcMaster University
Detected LanguageEnglish
Typethesis

Page generated in 0.0105 seconds