The cardiac wall has complex three-dimensional fiber structures and mechanical properties that enable the heart to efficiently pump the blood through the body. By studying the myocardial strains induced during diastole, information about the pumping performance of the heart and what mechanisms that are responsible for this effective blood filling, can be achieved. Two different computation methods for myocardial strain, both based on data acquired from marker technique, were compared using a theoretical cylinder model. The non-homogeneous polynomial fitting method yielded higher accuracy than a homogeneous tetrahedron method, and was further used to investigate cardiac and fiber strains at different wall depths and myocardial regions in normal and ischemic ovine hearts. Large spatial and regional variations were found, as well as alterations, conveyed by ischemic conditions, of fiber mechanisms responsible for the circumferential expansion and wall thinning during diastole.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-7955 |
Date | January 2006 |
Creators | Lundgren, Katarina |
Publisher | Linköpings universitet, Institutionen för medicinsk teknik, Institutionen för medicinsk teknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0017 seconds