Un problema clásico en geometría lorentziana es la descripción de las inmersiones isométricas entre los espacios lorentzianos de curvatura constante. En este trabajo nos centramos en la clasificación de las inmersiones isométricas del plano lorentziano en el espacio anti-de Sitter tridimensional. Damos una fórmula de representación de estas inmersiones en términos de pares de curvas (con posibles singularidades) en el plano hiperbólico. Esto nos permite resolver los problemas propuestos por Dajczer y Nomizu en 1981.
De entre todas las inmersiones isométricas del plano lorentziano en el espacio anti-de Sitter, algunas de ellas corresponden a toros lorentzianos (los ejemplos más sencillos son los toros de Hopf). Como aplicación de nuestra anterior descripción, probamos que todos estos toros pueden obtenerse a partir de dos curvas cerradas en el espacio hiperbólico.
Finalmente, demostramos que los toros de Hopf son los únicos toros llanos lorentzianos inmersos en una amplia familia de sumersiones de Killing lorentzianas tridimensionales. / A classical problem in Lorentzian geometry is the description of the isometric immersions between Lorentzian spaces of constant curvature. We investigate the problem of classifying the isometric immersion from the Lorentz plane into the three-dimensional anti-de Sitter space, providing a representation formula of these isometric immersions in terms of pairs of curves (possibly with singularities) in the hyperbolic plane. We then give an answer to the open problems proposed by Dajczer and Nomizu in 1981.
Among all isometric immersions of the Lorentz plane into the anti-de Sitter space, some of them are actually Lorentzian tori (the basic examples are the Hopf tori). As an application of our previous description, we prove that any such torus can be recovered from two closed curves in the hyperbolic plane.
Finally, we prove that Lorentzian Hopf tori are the only immersed Lorentzian flat tori in a wide family of Lorentzian three-dimensional Killing submersions.
Identifer | oai:union.ndltd.org:TDX_UM/oai:www.tdx.cat:10803/83824 |
Date | 04 June 2012 |
Creators | León Guzmán, María Amelia |
Contributors | Pastor González, José Antonio, Mira Carrillo, Pablo, Universidad de Murcia. Departamento de Matemáticas |
Publisher | Universidad de Murcia |
Source Sets | Universidad de Murcia |
Language | Spanish |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion |
Format | 91 p., application/pdf |
Source | TDR (Tesis Doctorales en Red) |
Rights | info:eu-repo/semantics/openAccess, ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como a sus resúmenes e índices. |
Page generated in 0.0115 seconds